TANE X3 W W S B

AD-A202 666

MODIFIED BACEKWARD ERROR PROPAGATION
FOR TACTICAL TARGET RECOGNITION
THESIS

Charles C. Piazza
Captain, USAF

AFIT/GE/ENG/88D~36

Nt -

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

N9 9 JaN 1989 B
“y

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

{Y‘m Jocament has beea
ice paklis relecre cud sules M8
Lﬂmﬂbnﬁos » anilmited, R %

¥
.
{l




AFIT/GE/ENG/88D-36

MODIFIED BACKWARD ERROR PROPAGATION
FOR TACTICAL TARGET RECOGNITION
THESIS

Charles C. Pilazza
Captain, USAF

AFIT/GE/ENG/88D-36

19 2.y 1989

Approved for public release; distribution unlimited

;n----n--l-----l----------------J



AFIT/GE/ENG/88D-~36

MODIFIED BACKWARD ERROR PROPAGATION

FOR TACTICAL TARGET RECOGNITION

THESI1S

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Alr University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Charles C. Piazza, B.S.
Captain, USAF

December 1988

Approved for public release; distribution unlimited




AcKnowledgments

There were many people behind the scenes of this research effort,
who played key roles in the aevelopment of my thesis. First and
foremost, 1s my wifebwnh her complete understanding
and support, and her many words of encouragement, my potential
w-s rea.tzed and personal goals achieved. I am +truly indebted to
Dr. Steven K. Rogers and Dr. Mark E. Oxley for their 3eemingly
unliimited amount of Knowledge, advice, and time afforded to me.
Special thanKks to Dr. Rogers, for instllling within me hils great
enthusiasm for higher learning.

I would also like to +hank Dr. Mathew Kabrisky for his
assistance and 1input, and especially for his wit and wonderful
view of the world in which we live., Many thanks to Captain Mike
Roggemann for his efforts in providing me with the forward
looking infrared i1magery feature vectors, and for our many

discussions.

bl
__‘:‘i"fﬁ_’_’i"“ ! oi__-__h ]
NT1S CGRAXI g

DTI¢ TaB

Unannouncud 0

Justific tlon /m
- T 1 (oY

1 e )

n e Y /
Distribution/
el R

avadinttiity Codos
T lAvel L end/or

Spectal

al |




+ Table of Contents
ACKNOW ]l @AMt S . . v v v vttt vt et ettt ettt et e e 11
List of Figures ....... v e b e e e e e e e e e e e Vi
List of Tables ..... e e e et e et et e e e e, 1X
Abstract ...... e e e e e e e e et et e et e e e e X
b P 1 ¢ 28 o+ Yo A5 ¥ e A T o' o L 1-1
1.1, Historical BacKground ... ... .. ..ttt monnanann 1-1
1. 2. Problem Statement . ... ...ttt ittt onononeean 1-1
b S SR Y o o 3 = T 1-2
1. 4. Approach and MethodologY ... ... i i i it i it e it i ie e 1-2
1.5, Thes1s OrganilzZatlon . .. o ittt i ittt et e e it e s 1-4
2. BacKground Material ... ... i e e e e e 2-1
2.1, INntroductiomn ... .. i e e e e e e e 2-1
2.2. Image PreproCeSSINE . . v v v vt v vt ettt 2-1
2.2.1. Moment Invariant Feature Vectors ............... 2-1
2.2.2. Other FeatUlr eSS . . .. it ittt sttt et et et e 2-3
2.3, Introduction to Artificial Neural Networks ........ -4
2.3.1. Multilayer PercCepPtrOn . ... .. o vttt neeanons 2-5
2. 3. 2. Notatbtolon ... v ittt ittt it ettt et e e e e 2-6
2. 3. 3. BacKward Error Propagatlon .........ueeeeiuonrains 2-7
2.3.4, Error Si8NaAls .. ...t ittt e e e 2-10
2.3.5. First Order Minimizatlon .. ... ..ot vt 2-11
2.4. Introduction to Second Order Minimization

TeCNLIQUES . v v v vt it sttt sttt i e e e e e s 2-12
2.4, 1. Performance SUrface . ... ...t ittt 2-14
2.4.2. Second Order Differential Equation ............. 2-15
2.4. 3. Second Order Implementing Equations ............ 2-18
2.5. Bayesi1an Classifler ... .. ittt e e 2-21
2.5.1., Implementatlon .. . . . i it it e e e e 2-21

2.5.2. Addition of BIns ....... ... 2-23 4

2. B, SUMMA Y . . v i vt et e e e e e e e e e e e e e e e 2-25 1
3. Second Order Algorithm and NetworkK Convergence ....... 3-1

iil i




B 3.1, INEPOAUCEION + vttt vttt ettt ettt e 3-1
3.2. Definition of Network Performance ............. e 3-1
3.2.1. First Partial Derivative ... .. ...t neon 3-2
3.2.2. Second Partial Derivative ....... ..oy 3-3
3. 2. 3. Approximate Average Second Partial Derivative 3-4
3. 3. Second Order Algorithm Development ............. ... 3-5
3.4, Generalized Second Order Algorithm ................ 3-13
3.4. 1. Steepest Descent Algorithm ............ ... 3-13
3.4. 2. Momentum AlgOorithm .. ... .. .. i cennonas 3-14
3.4, 3. AdALtive NOLSe . . v v it ittt e it et et et e e 3-15
3.4. 4, Second Order Contributions .... ... v v 3-15
3.5. Final Implementation Stage ......... . ... 3-15
3. 5. 1. Forward PasSsS . i v v vttt ittt et e e e e e 3-18
3.5. 2. BackWard PassS . .. i ittt e e e e e e e e e 3-19
3.6. Network Convergence Considerations ................ 3-23
3. 7. SUMMATY & v v v v vttt et st e m i et e s e e e e e e e e 3-26
4. Validation of Second Order Algorithm ................, 4-1
G, 1, INntroduCtlon ... v it ittt it e e e e e e e e e e e 4-1
4, 2. Exclusive OR Problem . ... v i ittt ittt ienene, 4-2
4.2. 4 Input Data and NetworkK Parameters .............. 4-2
4, 2. 2. Convergence ResUltS .. ..ttt it vttt i, 4-4
4., 3. Classification of Doppler Imagery .........coooviv 4-6
4, 3. 1. Input Feature Data ... .... ... ittt aneenan 4-6
4. 3. 2. Network Architecture and Learning Parameters ... 4-7
4, 3. 3. Classification Results .......... ... .. ... 4-9
4. 3. 3.1. Average Classification Accuracy ............. 4-9
4. 3. 3. 2. Average Total Output Error .................. 4-13
4, 3. 3.3, Target ACCUraACY .« « i v vt vttt bt ot e e e 4-18
.4, SUMMABEY - ittt e e e et e e e e e e e 4-22
5. Classification of Forward LooKing Infrared Imagery ... 5-1
5. 1. INtPoOAUCL IO . . i vttt e e e e e e e e e e e 5-1
5.2. Target and Non-Target Feature Classification ...... 5-1
v




S5.2.1. Input Feature Data ..... ...ttt 5-2
3 5.2. 2. Network Architecture and Learning Parameters ... 5-3
| 5.2.3. Classification Results ........... oo, 5-4
| 5.2.3. 1 Instantaneous Classification Accuracy ....... 5-5
5. 2. 3. 2. Average Total Output Error .........coveeev. 5-9
5.2. 3. 3. Neural Net Classifier Versus Bayesian
Classifier ............. et e e e e e 5-12
5. 3. Moment Invariant Feature Classification ........... 5-13
5.3.1. Input Feature Data ....... ..o, . 5-13
5. 3. 2. Network Architecture and Learning Parameters ... S5-14
5.3. 3. Classification Results ... .. ..o 5-16
5. 3.3.1. Average Classification Accuracy ............. 5-16
5.3.3.2. Average Total Output Error .............c..c... 5-23
S . SUMMAY o« v v vt et v e ettt e e e e e e e e e 5-27
6. Discussions, Recommendations, and Conclusions ........ 6-1
6. 1. DiSCUSSIONS . . vt v vt vttt ittt ettt et sttt 6-1
6.2. RecomMEeNAat ions . . v v v v it v vttt v s o e s ottt e s i -4
6. 1. CONCIUSLONS & v v i ittt ittt e sttt ettt ettt 6-7

Appendix A: An Iterative Approach to Solving Linear

Differential Equations L., A-1
Appendix B: Linear Algebraic Forms and Notation ......... B-1
Appendix C: Partial Derivatives of the Sigmoid Function . C-1

Appendix D: Second Order Convergence Conditions for a

Single Cell ... .. it i e e e D-1
Appendix E: Further Comparisons with the Bayesian |
Classifler ... .. i e E-1
Appendix F: XOR Model .. ... ... ittt it ii e F-1
Appendix G: ADA Programming Model .............. ... ..., G-1
BiblaloBrapPhy .o i e e e e e e e BI-1t
20 S 2 - S VI-1 .ﬁ
v




L List of Figures

Figure

2.1 Typical Multilayer Perceptron Architecture ......... 2-5
2.2 Functions of a Single Cell on Forwara Pass ......... 2-8
2.3 Sigmoid Tfransfer Function .............. .. ... 2-9
2.4 Functions of a Single Cell on Backward Pass ........ 2-10

2.5 Signal Flow Through Cell Using Second Order

Implementation ..... ... ittt vttt enneeeeeenns 2-20
2.6 Typical Discrete Conditional PDF ................... 2-24
3.1 Signal Flow Through a Single Cell .................. 3-20
3.2 Two Layer NetworkK Display .. ... .. i, 3-21
4,1 XOR Network Architecture ........... ... 43

4., 2 Average Training Classification Accuracy for
Gradient Method .. ... ... . i i it 4-10

4, 3 Average Training Classification Accuracy for
Momentum Method . ... .. . . i i e 4-114

4,4 Average Training Classification Accuracy for
Second Order Method ... ... it it i it vttt e e 4-11

4.5 Average Test Data Classification Accuracy for
Gradient Method .. .. i i ittt ittt et e e e e e e 4-32

4.6 Average Test Data Classification Accuracy for
Momentum Method . .. . i i et e e e e 4-1¢2

4.7 Average Test Data Classification Accuracy for
Second Order Method . ... ... ... . . i 4-13

4,8 Average Total Output Error Using Training Data for
Gradient Method .. .. .. i i i i e e e e e e 4-14

4.9 Average Total Output Error Using Training Data for
Momentum Method . . . . . i i i i i e e e e e 4-15

|
4. 10 Average Total Ovtput Error Using Training Data for 4
Second Order Method . ... . . .. i i i i e e 4-15

v1

o im




4. 11

4,12

Average Total Output Error Using Test Data for
Gradient Method .......... v e e e e e e e

Average Total Output Error Using Test Data for
Momentum Method ... .. it ittt ittt ettt it o o e s et eee

Average Total Output Error Using Test Data for
Second Order Method ... ... ..ttt t et tmnonesnneenenss

Instantaneous Training Classification Accuracy for
Gradient Method . ... . i i it ittt ettt i e

Instantaneous Training Classification Accuracy for
Momentum Method . ... ... i i ittt it et ettt

Instantaneous Training Classification Accuracy for
Second Order Method . .. .. . i i ittt ittt it i e e

Instantaneous Test Data Classification Accuracy for
Gradient Method ... .. i i it ittt e e e e e e

Instantaneous Test Data Classification Accuracy for
Momentum Method . ... . . . i it it e et e e

Instantaneous Test Data Classification Accuracy for
Second Order Method .. ... ... . i ittt

Average Total Output Error Using Training Data for
Gradient Method (one pass tnhrough network) .........

Average Total Output Error Using Training Data for
Momentum Method (one pass through network) .........

Average Total Output Error Using Training Data for
Second Order Method (one pass through network) .....

Average Training Classification Accuracy for
Gradient Method .. ... . i i i it e e e e

Average Training Classification Accuracy for
Momentum Method .. .. . . i i i it i it i et e

Average Training Classification Accuracy for
Second Order Method ... ... ... . i it

Comparisons of Gradient, Momentum, and Second
Order Methods on Training Data ..... ... ..o,

Average Test Data Classification Accuracy for
Gradient Method .. ... ... . . . i e

vili

5-10

5-10

5-17




. 15

.16

AT

.18

.19

. 20

.21

.e2

.23

Average Test Data Classification Accuracy for
Momentum Method .. ... .. v ottt ottt oss 5-20

Average Test Data Classification Accuracy for
Second Order Method ...... ..ttt ennsonnonas 5-21

Comparisons of Gradient, Momentum, and Second
Order Methods on Test Data ... ... . ittt it i, 5-22

Average Total Output Error Using Training Data for

Gradient Method ... ... . . . ittt i e 5-23
Average Total Output Error Using Training Data for
Momentum Method ... . . ittt i i e e e e e e 5-24

Average Total Output Error Using Training Data for
Second Order Method . ... ...ttt it i 5-24

Average Total Output Error Using Test Data for
Gradient Method .. ... ... . i i ittt i e e 5-25

Average Total Output Error Using Test Data for
Momentum Method ... .. .. ittt et et e e 5-26

Average Total Output Error Using Test Data for

Second Order Method .. ... .. it i vttt v to oo 5-26
An Illustrative Graph of Newton’s Method ........... A-4
A Single Cell ... i ittt ittt e i s s e e e e C-1

Single Cell and Declsion Boundary: Pictorial
Problem DescrilpPtilon ... i it vttt it ittt ot teeneean D-2

Quadratic Function for d

"
(@)
w}
|
-3

Quadratic Function for 4d = 1 ... ... . i D-7
A{E) £Or A = O i i e e e e e e e e e e e D-15
A(E) For A = 1 e e e e e e e e e e e D-15

vill




List of Tables

Table
4. 1 Input Pattern Vectors and Desired Response for XOR . 4-3
4.2 Learning Parameters for XOR . ... .. ittt i e, 4-4

4,3 Comparison Between First and Second Order Techniques
b o 3 oD € © ) = JE 4-5

4,4 Target Data Base for Classification of (doppler

moment 1NVariantsS) .. .. e e s 4-7
4, 5 Network Architecture Data .............. ... .. .. ... 4-8
4.6 NetworkK Training Data ......... ..« ... i, 4-8
4,7 Training Data Confusion Matrix for Gradient Method . 4-19
4.8 Training Data Confusion Matrix ‘or Momentum Method . 4-19

4,9 Training Data Confusion Matrix for Second Order

Method ... e e e e e e e e e Y4-20
4,10 Test Data Confusion Matrix for Gradient Method ..... 4-20
4. 11 Test Data Confusion Matrix for Momentum Method ..... 4-21
4. 12 Test Data Confusion Matrix for Second Order Method . 4-21

5.1 Target and Non-Target Sample Breakdown (FLIR

feature VeCtor S ) & i i i it i e e e e e e e e e e e 5-2
5.2 Network ..°~chitecture Data ........ ... .. ... 5-3
5.3 HNetworK Training Data ... ... ittt ey 5-4

5.4 Classification Accuracy of Neural Net Classifilers

Versus the Bayesian Classifier .............. ... ... 5-1¢

5.5 Target Data Base (FLIR moment invariants) .......... 5-14

5.6 HNetworkK Architecture Data ............ .. ... .. ..., 5-15
5.7 NetworK Training Data ........... . .. o 5-1% }
E.1 Overall Classi1f1cation ACCUraACY . . . vt v vi v . E-1 R
1X 'J
—




| me

Abstract

/

¥

V;‘This thesis explores a new approach to the classification of
tactical targets using a new biologically-based neural neiwork.
The targets of interest were generated from doppler imagery and
forward 1looKing infrared 1imagery, and consisted of tanks, trucks,
armored personnel carriers, Jjeeps and ©petroleum, o011, and
lubricant tankKers. Each target was described by feature vectors,
such as normalized moment invariliants. The featirres were
generated from the lr'nagery using a segmenting process. These
feature vectors were used as the 1nput to a neural network
classifier for tactical target recognition.

The neural network consisted of a multilayer perceptron
architecture, employing a backward error propagation learning
algorithm. The minimization technique used was an approximation
to Newton’s method. This second order algorithm 1s a generalized
version of well Known first order techniques, 1.e., gradient of
steepest descent and momentum methods. Classification using both
first and second order techniques was performed, with comparisons

drawn.




Modified Backward Error Propagation

for Tactical Target Recognition

1. Introduction

1.4, Historical BacKkground

In recent years there has Dbeen an enormous increase in the
interest of artificial neural networks (ANNs) in a variety of
disciplines. One of the reasons behind thils renewed 1nterest, 1s
ANNs may provide a solution +to +the problem of machine
interpretation of image and voice patterns; a solution that has
thus far eluded the digital computer. Therefore, 1t 1s no great
wonder that ANNs haver sparked the interest of scientific and
engineering groups within the military community. From a
military aspect, 1f machines can be taught to learn and recognize
patterns, then 1t would Dbe possible to realize an autonomous
weapons system. A piloted aircraft could deliver the autonomous
weapon systems well outside enemy airspace, allowing the weapon
systems to seeK out the target it was trained to destroy, and

minimize the danger placed on the pilot.

1.2. Problem Statement

The thesis problem 1s to classify tactical targets as viewed
from forward looking 1infrared (FLIR) imagery, and doppler
imagery. The classifier to be used is a computer simulation of
an ANN.

1-1




1.3. Scope

The targets of interest to be classified were from a
tactical scenario. Doppler and FLIR imagery in raw form, must
be preprocessed before being submitted as the input to an ANN
Much of this preprocessing 1s beyond the scope of this thesis
effort; however, when deemed necessary +the reader will Dbe
directed to the applicable reference. The targets to Dbe
classified from the doppler 1imagery consisted of M60 tanks,
Petroleum, Oil and Lubricant (POL) tankers, jeeps, and 2.5 ton
trucks [12). Targets extracted from the FLIR imagery consisted
of MS551 tanks, 2.5 ton flatbed trucks, Mi13 Armored Personnel
Carriers (APCs), and CJ-5 jeeps [10].

The ANN architecture used for this study was the multilayer
perceptron described by Richard P. Lippmann (4:15-18). Back
propagation techniques will ba used for updating the network
weights. The minimization algorithms used were first and second
order backward error propagation methods. The second order
algorithm is a generalized version of the first order algorithm
and is also an approximation to Newton’s method, derived by David

B. Parker [7:593-600; 8].

1.4. Approach and Methodology

The second order back propagation network required
validation before being tested and used as a classifier.
Therefore, before addressing the pattern classification problem,

the network will be tested on the exclusive OR (XOR) problem. If




o W

«—.-1_:.

the network can solve the XOR problem, then it may be possible to
apply the network on the more difficult task of pattern
classification.

Next, 1if the potential exists for pattern classification, 1t
would be helpful to have a training set of feature vectors which
have already been classified with a neural networkK. Such is the
case with the doppler imagery. Dennis RucK [12] trained a
network using an algorithm provided by Richard P. Lippmann
(417}, and wusing moment invariants extracted from the doppler
imagery. The algorithm was a first order, steepest decent search
technique applying a momentum term. An important result of
Ruck’s study, for this +thesis effort, was that the network
achieved near ©perfect classification of the +training set.
Therefore, the doppler imagery will play an important role during
the network validation stage.

A comparison between the first order and second order
techniques using this data will follow. Classification accuracy
of the training set and the test data set will be measured
against number of iterations. Moment invariants, from the same
imagery as the training set and never before seen by the network
will make up the test data set. Also, log error plots versus the
log of the number of iterations will be generated for comparison.

The final task was classification of features generated from
the FLIR imagery. Various other features, as well as the moment
invariants generated from the FLIR imagery will be considered for

classification. A portion of +the features will be used for

1-3




classification and comparison with a Bayesian classifier
implemented Dby MiKe Roggemann ([10]. The task will consist of
training the network with a Known training set and measuring the
classification accuracy once the network has been trained.
Again, classification accuracy will be measured using the
training set and test set. First and second order methods will
be used in comparison with the Bayesian classifier.

To conclude the section on classification of the FLIR
imagery targets, the moment invariants will be considered
explicitly for classification. Similar comparisons will be drawn
as described above for the doppler 1magery, for both the first

and second order techniques.

1.5. Thesis Organization

This chapter served as the introduction to the thesis effort
undertaken. Chapter two provides a discussion of the fundamental
foundation of material necessary for the origins of the
algorithms developed in chapter three. Chapter four consists of
the validation stage for the second order bacK propagation model.
Chapter five contains the results obtained during classification
of the features generated from the FLIR imagery. Conclusions,
recommendations, and discussions of the results follow in chapter

six to conclude the thesis.

1-4

.




2. BacKkground Material

2.4. Introduction

This chapter begins with a bdrief and limited discussion on
preprocessing the doppler imagery, and forward looking infrared
(FLIR) imagery. Next, an introduction to artificial neural
networks (ANNs) follows, along with a brief discussion on the
current use of ANNsS as classifiers. The network architecture,
learning algorithm, and minimization algorithms used for this
study will be included. The following section highlights the
significant steps in ParkKer’s approximation to Newton’s method
(8, which 1in turn will be followed by the equations used to
implement this approximation. The final section includes a
discussion of the Bayesian classifier.

This investigation required a review of the methods and
approximations used in solving differential equations and their
discrete counterparts, the difference equation. Therefore
aprendix A has been reserved for a review in these areas. The
algorithms 1involved are also quite heavily dependent on linear
algebraic forms, so appendix B has Dbeen reserved for such

discussions, along with any accompanying notation.

2.2. Image Preprocessing

2.2.1. Moment Invariant Feature Vectors

As mentioned 1in section 1.3, objects of 1interest, the
targets, must Dbe preprocessed before Dbeing applied to an ANN.
The targets must be extracted from the raw doppler and FLIR

2-1




'T""':———

imagery. This process of extraction is Known as segmentation.
Dennis Ruck (i2)] describes the segmentation of the doppler
imagery. Where as Mike Roggemann (10] used a variation of the
techniques described by AzZriel Rosenfeld [(11:62-73) for
segmenting the objects from the FLIR imagery.

Once the targets have been segmented, a set of features is
described to provide shape discrimination between targets. Both
sets of images used moment invariants for shape description.
Ruck [i2] describes the technique for shaping the doppler
imagery, while Roggemann ([10] used a technique described by Ming-
Kuei Hu [(2:179-187].

The final preprocessing concerns normalizing the moment
invariants. It was required to¢ normalize the moments to insure
that the large valued moments did not bilas the decision makKing
ability of the classifier. Very large values could influence the
network in the wrong direction. Therefore both data sets were
normalized toc have a mean vector of zero and a standard deviation
vector of one. This was accomplished by first computing the mean
and standard deviation of each feature over the entire training
set [1:99-105). The JtI component of each feature vector in the
training set, x; was transformed Dby the following équation:

XKy — my
Yy = —mmm 2.1
9
where m g and 03 are the mean and standard deviation of feature

J, respectively [1:99-105). This provides a mean vector of O and

a-2




a standard deviation vector of {, and each feature is now scaled
identically (12].

As eluded to in the previous paragraph, the normalized
moment invariants are basically a set of features describing the
target of interest. Therefore, an n-dimensional vector or
feature vector describes and discriminates the targets of
interest, where n represents the number of moment invariants.
From here on these moment invariants will be referred to as
feature vectors, representing the targets of interest. Each
target, Known as a class, will have many examples of feature
vectors describing it.

2.2.2. Other Features

There were other features worthy of classification within
the Roggemann FLIR imagery data set [10). Roggemann performed
classification with a decision rule of target (TGT) or non-target
(NT) using his implementation of a Bayesian classifier. An
identical classification will Dbe performed with the ANN
classifier studied in this effort for comparison. Target
features extracted from the imagery considered tanks, trucks,
APCs, and CJ-5 [jeeps. Each 1image of a tactical scenario
consisted of TGT blobs and NT blobs. Features extracted from
these Dblobs and considered for <this study were the length to
width ratio of each blob, the blod mean intensity minus the
bacKkground mean intensity, and the blob standard deviation of the

intensity.

2-3




2.3. Introduction to Artificial HNeural Networks

An ANN is Dbasically a computing system usually consisting of
many processing elements densely interconnected via
interconnection weights. These processing elements are commonly
referred to as nodes or cells. The construction of the network,
the way in which the nodes are connected, is Known as the network
architecture.

Many architectures exist in the literature and each 1is
highly dependent on the application ({(4:4-22). In this study the
ANN will be used as a classifier, In general, classifiers can
perform three different tasks, as described by Lippmann [4:6]
First, they can identify which class best represents an input
pattern, when the input has been corrupted by noise. Secondly,
they can be used as an assoclative content-addressable memory.
In this application, part of an input 1s available and the
complete input pattern 1is desired. Such an application could Dbe
found in the decoding of information signals. The +third task
involves vector quantization. The 1idea 1is t0o map an n-
dimensional input vector into an m-dimensional output vector,
where usually m < n.

This thesis effort 1involves the 1identification of a class
which Dbest represents an 1nput. The feature vectors discussed
above will be used as the input patterns fed to the ANN. The ANN
used in this study will project an n-dimensional feature vector
to an m-dimensional output vector. This should not be confused

with vector quantization. The resultant output describes the

2-4

il




predetermined class from where the input originated. Hence, the
term "“supervised” network. The network architecture used to
perform this task 1is discussed in the following section.
2.3.4. HMultilayer Perceptron

A common architecture used for pattern classification
applications is the multilayer perceptron ([4:15-18], see Fig.
2.1, The multilayer perceptron consists of one or more hidden
layers, where each node of each layer is connected to each node
in the layer above it. This implies ,that each node 1s a multi-

input, single-output element.

OUTPUT

3 Na-1 3 » 3
OUTPUT foutrj = £(CE Wy foue,y *+ ©5)
LAYER 1

0 ¢ J ¢ N3g-1

2 Ny~-1 4 2
SECOND foutrj = (L wijefout, 1 + 95 )
HIDDEN 1 '
LAYER 0O ¢ 3 ¢ Np-1t
FIRST foutry = £(Z wyyefin 1 + Oy )
HIDDEN i
LAYER 0O ¢ J ¢ Ng-1

Figure 2.1 Typical Three Layer Multilayer Perceptron Architecture

2-5

h




T

) In Fig. 2.4, the numerical superscript notation denotes the

parameter associated with 1ts corresponding layer. The letter
(i) denotes the number of inputs to an arbitrary cell, where J
denotes the number of cells in a layer. In the following

u section, emphasis 1is place on notation for clarity.

2.3.2. HNotation

Let foyutg,j(t) denote the output of the J'P' node of a given
layer in the network at time t. Furthermore, let £f;,(t) denote
the pattern of inputs to that node. Note that all bold face
characters denote vectors. For example, fi5(t) 1s a vector whose

components are

fin(t) = [ finqt) fina0) o fipnq0) T

Inputs are either the outputs of nodes from the previous layer or
information from the environment, as shown 1in Fig. 2.4. The
interconnection weight w;; connects the output of the ith node in
the previous layer to the JtP node of the following layer.
Therefore, w is the weight matrix for a given layer.

All though not shown 1in Fig. 2.4, each node will also
receive a number of error signals back propagating from the layer
immediately above it. These error signals maKe up a vector

denoted as,

ein(t) = [ egpg(t) ejpat) .. eyppty T

Just as a node receives a number of weighted inputs to produce an *

output, the node will receive a number of weighted error signals.

2-6




————

The weighted error signals are summed by each node and this total
error (e4o¢) is used for updating the nodal weights and back

propagating to the lower layers. The total error 1is

r
e t H e t).
tot( ) Zi in, 1( )

The output error of the JtD node 1s denoted as eout,j(t) ana is
defined Dbelow in section 2.4.3 and discussed in chapter three.

The algorithm used in this study requires the use of time
derivatives of +the above quantities. Therefore primed (')
quantities will denote the time derivative.
2.3.3. Backward Error_ Propagation

within the confines of this thesis, backward error
propagation (BEP) or Dbackprop will be 1implied as an entire
supervised learning algorithm ([16:265]. This algorithm will Dbe
defined with a sigmoidal transfer function, a square error
function, and a welght update rule to be defined in section 2.4,

The multilayer perceptron in Fig. 24 1is an example of a
backprop network, as introduced by Lippmann [4:15-18). Input
signals enter the bottom of the network and exit the top as
output signals. The output signals are computed as functions of
the inputs to the node and interconnecting weights. From this
output, an error signal is computed and re-enters the top of the
network propagating backwards. Hence, the name bacKprop. Each
node within a given layer contains a set of weights that the cell

must adjust to minimize the error signals.

2-7




Lippmann’s first order minimization method uses the backprop
learning algorithm. This algorithm computes the partial
derivatives of the square error function with respect to the
weights of the network. It uses these partial derivatives to
update the weights.

wWhen computing an output, each node within the network

described by Lippmann performs two functions [4:7), as shown in

Fig. 2.2.

OuUTPUT

f
lno’ ln.2 'ﬂ.a

INPUT

Figure 2.2 Functions of a Single Cell on Forward Pass

2-8




First, 1t computes a weighted sum of all its inputs, the

activation

t) = w t)f t o . 2.2
GJ( ) ZE 1J( ) “"1( ) ¢+ j

The symbol ©3; is the threshold level of the th node. The
threshold is no more than a weight, with a corresponding constant
input normally equal to {. Thus the name threshold, which is
sometimes referred to as an offset. Secondly, it passes this
weighted sum through a sigmoidal transfer function, where the
output of the nonlinearity is the output of the node. The
nonlinearity most commonly used for problems associated with the

multilayer perceptron 1is a sigmoid function,

1

fout'J(aJ, < . 2.3
(1 « exP(—GJ))

As shown in Fig. 2.3, the output of each node 1is continuous
between O and 1. Parker (8] refers to this process as the

forward pass.

1.25 ! T T !
. i — = _

t

f(a) . 0 |
S {

—T—w—-—-;—— —_— —————

-0.25 .
-10 a 10

Figure 2.3 Sigmoid Transfer Function

2-9

R




2.3.4. Error Signals

Once the output of the networkK 1is determined, an error
signal 1is computed to measure the performance of the network.
The error signal is back propagated to aill the layers. The
weights of each node are adjusted using this error signal that it
receives from all of the nodes which receive its output. Parker
(8] refers to this process as the backward pass and Fig. 2.4

depicts the function of the cell on the backward pass.

ERROR SIGNAL IN

ERROR SIGNAL OUT

Figure 2.4 Functions of Single Cell on BacKward Pass

2-10




In the following paragraphs a minimization algorithm or
weight update rule is provided. The algorithm describes the
method in which the node uses the error signals to update its
weights, as described by Lippmann [4:7).

2.385. First Order Minimization

Lippmann’s first order minimization technique assumes a
squared error function to minimize (4:17]. The weight update
rule uses the first partial of the squared error function with
respect the weights of each cell. Performing this partial vyields
the following weight update rule for an arbitrary output layer

node:
le(tol) z wij(t) + n.eJ.fm'i(t) + O« Wij(f.) - le(t—l) ).

The symbol N controls the rate of convergence, while ¢ 1s a
momentum scalar. The error signal OJ for the Jth output node has

the following form:

93 = fout, gyl 2 — fout, gy 1ol A5 — foue, 3 )

where dJ denotes the desired output of the Jth output node. The
desired value 1is commonly set to { or 0 anad only one output node
allowed high at a time. The error signal for the internal layer

nodes 1s given by

o = £ { t — f )~Eo~w.
J out, J out, J % K Jk

The error signal is a weighted summation over all nodes in the
next higher layer. Keep in mind, that the output (foy¢) In the

2~14




above equation now pertains to the corresponding hidden layer
cell.

The above update equations, follow the gradient of steepest
descent in an iterative fashion. An input enters the bottom of
the network and an output is computed at the top. The partial
derivative of the squared error function is computed and back
propagated as an error signal. This error signal is in turn used
in updating the previous weight value of an arbitrary cell. This
iterative process is continued until the minimum of the squared
error function 1is found indicating optimum weight values.

The momentum term has the effect of smoothing the squared
error surface. It provides more information on the current
update cycle by adding a weighted change from the previous cycle.
The momentum term pushes the change in weights further in the
direction of +the previous update. Appendix D considers the

momentum term 1in more detail.

2.4. Introduction to Second Order Minimization Techniques

In order for classification to taKe place, there must Dbe
some learning rule the network uses +to minimize the error
associated with the decisions it must make. Therefore the
learning rule applies some minimization technique. Dennis Ruck
[12) implemented a multilayer perceptron with a backprop learning
rule that applied the momentum method, as provided by Lippmann
(4:17) and discussed 1in the previous section. The momentum

method, developed by Rummelhart, Hinton and Williams [13), 1is a

2-12




variation of the steepest decent method developed by Werbos [15).

Both methods are first order methods because they only involve

the first derivative of the quantity being minimized. A second
order algorithm makes use of the second derivatives.

To understand the difference between first and second order
techniques, Parker draws upon a simple, but dquite effective

analogy which 1is quoted Dbelow.

*Imagine that you are at the top of a ridge. Below you
is a long, narrow valley that slopes gently down to
your right. Far off in the valley to the right is the
sKi lodge, to which you wish to return. One way to
get to the lodge is to simply sit on your sKis and let
gravity move you. You will zip quickly down the slope
till you hit the valley, but once in the valley you
will coast very, very slowly till you reach the lodge"

(al.

This 1is equivalent to first order techniques which follow the
gradient of steepest decent. Fast convergence down the slope may
give way to very slow convergence in a valley. On the other hand

consider an alternate path.

"A better way to get back to the lodge is to slightly

drag one of your sKis so that you cut across the slope,

maintaining a constant speed till you hit the lodge.

/7

2-13




h This is equivalent to a second order algorithm, which
has a constant convergence rate under appropriate
conditions"” (8}.

The algorithm discussed in the following paragraphs 1s an

b

{ approximation developed Dby David Parker ([7:593-600; 8]} to the
second order HNewton’s method. This algorithm is a more general

= case of the steepest decent and momentum methods. By adjusting

the learning parameters correctly the algorithm can be made to

perform as the steepest decent or momentum method. Below 1is a

brief presentation of the algorithm, for a more thorough
explanation see ([8] and appendix A.

2.4.4. Performance Surface

For now, the quantity being minimized for this study is an
independent variable of some performance function of the network.
ParkKer denotes the instantaneous performance of a network by
s( fin(t), w(t) ). The instantaneous performance is dependent on
the current set of inputs and also the current set of weights.
However, in general, the derivation begins Dby defining an average
instantaneous performance, which depends only on the weights of

the network. The average instantaneous performance 1is given by,

t
—pe(t—r)
avg( s(w(t)) ) : p-Lms( £in(T), W(t) )ee ar. 2.4

Parker notes that the scalar quantity v is roughly the ijinverse of

the amount of time the average 1is considered. Basically, the

instantaneous performance will be exponentially weighted over all

2-14 *

R o~ M




-input patterns f£;,(r) for a set of weights w(t) at time t. In
other words, the average performance provides a certain amount of
memory from information of past inputs. The exponential term
insures that emphasis is placed on the most current inputs [8).

A graph of avg ( s(w) ) as a function of w(t) would define a
performance surface at a fixed time t. Thus, the performance
surface changes over time with each new set of inputs. According
to Parker, the task of the Dbackprop network is to find the lowest
point on the performance surface, and then follow that point as
the surface changes with time (8).

2.4.2. Second Order Differential Equation

ParKer’s derivation of the second order differential
equation is very thorough and well explained. Therefore, no
attempt will be made to duplicate his work in full. However, it
will be time well spent to highlight the significant intermediate
equations, as well as the final result. See [8] and Appendix A
for further study.

Parker derives the algorithm with an objective of
optimality in mind. Assuming the weights have converged to a
minimum of the performance surface, then as the performance
surface cnanées with time, the weights should follow this
minimum. The first step 1involves the derivation of Newton’s
method from an optimality criterion. The goal 1s to find +the
minimum of the performance surface by updating the weights. So
the first step 1s to takKe the derivative of both sides of Eq. 2.4

with respect to the weights. Since the performance surface 1is

2~15

Mn-_-u-—m—J




changing with time, it 1s desired to have the weights follow the
minimum as time changes. This requires taking the time
derivative of doth sides. By doing so Eq. 2.4 is transformed to

the following (see appendix A)

ow* als -1 as
-_— —-[ avg} —m— ] s ' 2.5
at dw*aw*T aw*

where the functional dependencies on t, f£fjn(") and w(t) have
been suppressed for convenience. The star (¥) notation denotes
the optimal value of the weights (w¥). The following
relationship can be made since the network performance 1is a

function of time through the weights:

3 ( as ) ( acs ) ow*
at| aw"* aw*aw"T | at

As Parker points out, the explicit first order differential

equation of Eq. 2.5, Known as Newton’s method, is valid only if
the average second derivative matrix 1is 1invertible (it 1s not)
[7:593-600; 8). By actually computing the determinant of the
time average second derivative matrix, reveals the matrix to be
singular and thus, not invertible. This 1s shown in appendix D.
Regardless, inverting this matrix 1s entirely too expensive.
Consider n weights 1in the network, the number of operations
performed 1is a function of n3 or om3). The reason behind the
potentially enormous number of operations is that each component
of the matrix must D»e computed. This entails computing the

2-16




L average second partial with respect to every combination of

weights, followed Dby inverting the matrix for each cell in the

network. These computations must be made before the weights are
updated. A very unpleasant thought! This tasKk has been avoided
by other researchers using quasi-Newton methods reducing the
number of operations to O(n2).

Parker, on the other hand chose a different route.

Rewriting Eq. 2.5 as

a2s aw* as
aveg N e U ’ 2.6

aw*aw*T | at ow*

an lterative approach 1s applied t0o obtain a close approximation
to the time derivative of w* [8). Appendix A describes an
iterative approach 1in general. Following this approach, a
second order differential equation for an optimal path for the
weights:

d2w* as

-4 —Bou.
ate ow!

als aw*
. , 2. 7

-_— Boavg(

awtaw'T | ot

where B controls the convergence of the algorithm. The symbol

w' denotes the approximate values of w* The derivation could be
stopped here with an attempt to implement Eq. a2.7. However, 1
Parker chooses to continue since Eq. 2.7 is only an approximation
for the optimal path (8]

According to Parker, leakage terms are required to #

guarantee convergence ([7:593-600; 8], see appendix A. The final

2-17
d




version of the algorithm used for classification in this thesis

is given Dy,

32w as als
— : -2 o — = | a +I 4+ a savg| —— ow
2 3

ate 1 aw awawT

a2s aw
- a I + a cavg| — ¢— 2.8
4 S dwowT at

The matrix I is the identity matrix, and is introduced to ensure

that matrices are added to matrices. Where the constants

al z B.U|
az = Iq+lp,
ag = 13+8,

ay = 14 ¢+ 1p, and

ag = B

are learning parameters and usually small positive numbers. The
constants 1y and 1l are the leakage terms introduced by Parker
[8), see appendix A,

2.4.3. Second Order Implementing Equations

Implementing the algorithm of Eq. 28 1s not a straight

forward exercise. Chapter three will derive the implementing
equations in detail. There are several ways to 1implement the
algorithm and the implementing equations ParkKer uses are listed
below. The equations describe a forward sweep and backward sweep
through the network. On the forward sweep each cell computes 1its
own copy of the following:

2-18




h fout,k = fout,k{fin, k» Wkh

- Wk = 33°At°'k + 35°A'k,
:
ot af
£ = __Qul .f! + _—in W .,
in

The calculations for the backward sweep are as follows:

r
e H e oo lTOC_ )
tot s, in, i in

r
e H e : {T.e ,
tot 4, in, i in

af
e : e .__Q.LLL ,
out tot af K
in
af 32¢
e’ = e ._—in + e . ow
out tot LY K tot a¢ O'T K
in in
3%¢
+ _———.Q-uL .f'. .
ot o9¢T |k 1P
in in

2—19




"k*i s A'k - aa'Ata°'k -- 34°At°A'k

af
+ ( a +Atl.e + Atee’ ) —out
1 tot tot ow K
LY-2 acs
+ Atee . —out w4 —_out o .
tot awowT | k awaf'f k in
n

Wgeyg = Wk + AWp,y.

The above equations describe a discrete implementation of
Eq. 2.7 for a single cell, where K denotes the discrete time
step (8]). The implementation may be simulated with a computer
Program. They are listed here for those readers who wish to skip
the detailed 1mplementation stage discussed in chapter three.
Figure 2.5 below demonstrates how the cell varies from Figs. 2.2

anda 2.4 i1n the amount of information it must process.

&Gnlsl a2t ,o!l- | Cnre
7 1 )
Cin i ! 6in.2 : :nu : ‘:n.r
i 1 !
] ] ]
] ] 1
Y h J h J
/ un, un, ..., Wy —\
] } |
] { {
1 ' e \
i | U
Y Y \J
,-;;,l- G'a-l.l- I-‘n,l- C;'nl.lv /lln.'- Cout, ¢+
lm,l €out,1 /m.l Cout.2 in.g ‘:nl.q

Figure 2.5 Signal Flow Through Cell Using Second Order
Implementation [8)

2-20




2.5. Bayesian Classifier

Later, in chapter five, the results obtained from a Bayesian
classifier will be compared to the results obtained from an ANN
classifier for a given set of features. In light of this, the
text Delow provides an introduction to the concept of a Bayesian
classifier., In particular, the approach Roggemann used in his
implementation of a Bayesian classifier will be discussed [10].
The discussion begins with a statement of Bayes rule, followed by
its application in the Bayes classifier.

2.5.4. Implementation

Recall that Bayes rule is defined in the following way:

plA, B)
p(A/B} = —m—
P(B)
and
Pl(A, B)
p[B/A] =z —————
P(A]
such that
P[A/B) p[B)
P[B/A) = .

PlA)

The bprobability of the occurrence of B given A (p[B/A)) 1s equal
to the product of the probability of A given B (p[A/B]) and the
probability of B (p(B]), divided Dby the probability of A (pP[AD.

For the Bayes classifier, the 1dea 1is to determine the
probability of the occurrence of a target (TGT) given some

feature (F) describing the target, or p[TGT/F). Another decision

2-at




the classifier must makKe is to determine the probability of a
non-target (NT) given a feature, or p(NT/F}. Each of these
conditionals is determined from the probability of occurrence of
a feature given a TGT or a NT. Hence, the Known conditionals
exhibited are in the form of p(F/TGT) and p[F/NT). Thus,
Roggemann’s implementation considered classifications of target
(TGT) and non-target (NT) only. In other words, by applying

Bayes rule it 1is desired to compute the following:

P[F/TGT) «P[TGT]

p(TGT/F)
P(F]
and

P(F/NT) - p(NT)
P[NT/F] .

P(F]

The value of the probability of a feature is given as:

p[F) = p[F/TGT} p[TGT) + p[F/NT)+pI[NT).

Applying the "Principle of Indifference” the a priori
probabilities of p{TGT] and p[{NT] are equal to 0.5 [5:1-53).
To consider multiple features (Fy, Fp, .., Fn Y 1t’s

necessary to impose a conditional dependence on the conditionals

for multiple feature decisions, such that

p[Fio Fa, DRI Fn/TGT]

pP[Fy/TGT) +pP{Fp/TGT} ... +p[Fp/TGT)

n
TP [Fl/TGT]
1i:=1

2-22




Applying Bayes rule while considering the above alterations,

provides:
® p{F;/TGT) +p[(TGT)
p[TGT/Fj_. Fa’ v ooy Fn] =
® P[(F;/TGT) +p(TGT] + w P(F;/NT) +p[NT)
and
™ P[F;/NT]) -p(NT]
PINT/F4, Fo, ..., Fpl =
7w p[Fy/TGT) «p[TGT) + = P[Fj/NT] - p[NT]
where nm is understood to range over all features, i = { . n.

Now <that the desired a posteriori conditionals have been
defined, it’s necessary to define a decision criterion. The
criterion used Dby Roggemann ([10] is the maximum a posteriori
(MAP) decision criterion approximating the minimum probability of
error. Simply choose TGT, if the p{TGT/F) > p[(NT/F], otherwise
select NT (5:1-53].

2.5.2. Addition of Bins

The conditional probability distribution function (PDF) of
an arbitrary feature given a TGT (or NT) is in general a
continuous function. Therefore, the probability of a feature
lying on a single feature point given a TGT (or NT) is zero. For

instance,

p(F = fo/TGT) = O.

Therefore, the conditional PDF 1is brokKen up into several uniform

2-23




incremental regions, called bins. Hence, the conditional

probability actually desired is given by

p{fog/™GT ¢ F « £4/TGT).

The number of bins varies and allows the construction of a new
discrete PDF as a function of the number of bins. Figure 2.6
displays a typical conditional PDF (p{F:OBJECT TRUTH]) as a
function of the number of feature bins. The (+) notation 1s the
conditional PDF for TGT data, while (o) indicates NT data, where

OBJECT TRUTH represents TGT or NT.

s
1
|
1
]
!
f
|
[
|

(S
|
|
I
}

P(F-0BJECT TRUTH)
|
|

F, BN
CONDITIONAL PDF OF LENGTH-TO-WIDTH RATIO

Figure 2.6 Typical Conditional PDF

2-24




2.6. Summary

This chapter focused on the bacKground material necessary
for understanding the thesis effort undertakKen. The chapter
began with a discussion of imagery preprocessing. It was found
that the images were reduced to a set of features describing and
discriminating the targets of interest. These features represent
the final interpretation of the real world. Next, it was desired
to introduce the ANN classifier used in this study, the
multilayer perceptron. The network required a learning algorithm
and bacKprop was chosen using first and second order minimization
techniques. Following a discussion on the performance surface
used for this study, the second order derivation introduced by
David ParKer was highlighted, Apprendix A discusses the
derivation 1in more detail. Equation 2.8 represents the second
order approximation to HNewton’s method. Appendix D discusses
convergence considerations for a true second order Newton’s
method., It 1is in appendix D, where it is reasoned that Eq. 25
must be approximated. Chapter two concluded with a brief
introduction to the Roggemann implementation of a Bayesian
classiflier.

The following chapter, discusses in detail the
implementation of the differential equation provided by Eq. 2.8.
The approximations assumed, as well as the efforts to reduce the
computational overhead will Dbe covered. The latter part of

chapter three will consider the initial network setup.

2-25




nd

3. Second Order Algorithm and HNetwork Convergence

3.4. Introduction

The first five sections of this chapter are devoted to the
implementation stages of Parker’s second order derivation
introduced in chapter two. Specifically, the implementation of
Eq. 2.8 will Dbe discussed. The following sections describe 1in
detail the approximations made, along with a discussion on the
mathematical notation. In addition, the implementing egquations
of section 2.4.3 will Dbe explained in full.

Once the algorithm used 1in this study has Dbeen fully
defined, a discussion on the initial state of the network is
necessary. For example, what are the initial networK parameter
values? How are the parameters chosen? These questions will

be addressed in section 3.6.

3.2. Definition of Network Performance

For the problem at hand, the parameter to be minimized will
be defined to Dbe the squared error function. Where the
instantaneous performance for a single output node is defined to

be

s(£inlt), w(t)) = ( dout(t) — fouelfinlt), w(t)) )2

: { elt) )2,

The performance surface is defined to be a function of the
desired output, dgyy¢(t)y and the actual output at time +t, and

3-1




will be interpreted as the square of the error e(t)
As per Eq. 2.2, the output has the following form,
1

fout(fin(t), '(t)) s . 3-1
(1 + exp(—f'f ‘W + 8))
n

In this context, w pertains to just those weights associated with
the cell in question.

Since there can be many output nodes, there must Dbe an
expression for s to accommodate the vector of error signals
generated from the output layer. Therefore, in general s may be

rewritten as

s - eT.e 3.2

The dependencies of s on fjn(t) and w(t), and e(t) on t has been
suppressed for notational convenience.

3.24. First Partial Derivative

Now that a quantity of performance has been defined, the
first and second partial derivatives of the performance indicator

(s) need to be defined. The first partial derivative of s with

respect to the weights 1s defined as follows, .
as o
— : —(eT.e)
aw aw
deT
: 2e—m—s e, 3.3
ow
since




? deT 3e
| —— @ 2 eT'—.

iw dw

The chain rule was used to obtain Eq. 3.3. The partial
derivative of the transpose of e with respect to w is a matrix
and is defined in appendix B. In this context, w implies all the
weights of the network.
3.2.2. Second Partial Derivative

The second partial of s with respect to the weights 1s found
by applying the chain rule once again. Therefore,

als ac
(eT.e)

awawT  awowT

d 8

—o| —(eT.e)
aw | awT

a e
2 —— aceTo——

ow owT

deT e d2e
: 2 ——— } eT.__.__

aw awT dwdwT

. +

als aeT ae aceT
2. e ]
aw awT awawT

dwdwT

where the partials of e and eT with respect to wT and w

respectively, and the second partial of eT with respect to w and

wT are defined 1in appendix B. Again, in the context above, w is

3

W—J




7

a vector of weights containing all the weights in the network.
3.2.3. Approximate Average Second Partial Derivative
Parker notes that implementing Eq. 2.8 explicitly requires

O(na) operations (8]. In order +t0 reduce the number of

. operations the network would have to perform to update the

weights, some approximations are in order. The first
approximation concerns the average second partial derivative of
the network performance quantity, s. Basically, to define the

average second partial of the network performance,

a2s

avg| ———

( dwawT ]
would require an iterative approach to obtain a solution to this
average second derivative matrix. The elements of the matrix
depend on the behavior of the cell at some point in the past,
considering the current weight values. Therefore, they cannot Dbe
computed without going back in time [{7:598]. For some
applications, 1including the application of this effort, this
would require large storage space in the form of memory.
However, ParkKer suggests an alternative for the class of
semilinear functions (8], The assumption is to approximate the

average of the second partial of the network performance with the

current instantaneous value, such that




i Since the networkK cells have semilinear transfer functions in the
sigmoid function [16:264), according to ParKer this should be a
L good estimate (8).

As it turns out, this approximation plays a significant role

in arriving at the implementing equation Awyg,, of section
33. If you recall, avg(s) was a function of f£in(r) and w(t).
The only dependence of s on time was through w(t). Now that the
instantaneous value 1is desired the network performance 1is a
function of £;,(t) and w(t), where both are functions of time.
The above approximation 1is also a desired result. Recall
from Eq. 2.3 that the average network performance applied more
weight to the most current input. The input data set used for
this study was a set of feature vectors describing the target of
interest. There is no reason to believe at this point, that any
one of these feature vectors 1s more important than the others.

Therefore, this assumption 1s considered a good estimate.

3.3. Algorithm Development

The development begins with a restatement of Eq. 2.8, where

32w as als
_— : —-a o—-—(a-l»a-avg[———))ow
at2 L oow 2 3 owowT
acs aw
- [a +I + a -avg[———) ]—— 3.6
4 5 dwawT at

Using the approximation of Eq. 3.5, Eq. 3.6 becomes,

1




olw as a2s
-_—z —a -—-(aolfao——-——}nw
ate 1 aw -2 3 awaowT
als aw
-(a I v a __.]_ s
4 S awawT | at

As pointed out in section 2.4.4, Parker reasoned that since the
average network performance was a function of t, because the

weights were a function of t, that he could make the following

) as acs aw
— — - —_— e 3.8
at | aw awdwT at

For Eq. 3.7 to be totally correct, this action must be reversed

relationship:

since it 1is clear that the instantaneous second partial of s is a
function of $£;,(t) and w(t). Therefore, substituting Eq. 3.8 in
Eq. 3.7, and removing the identity matrix I, and then expanding,

the following equation 1is obtained:

asw as acs
— 2 -—alo-— — 320' -— aao——-——o'
a2 aw awawT
aw 3 as
—a +»— — 3 s—] — |. 3.9
% a3t S at| ow

The next step 1is to substitute Egs. 3.3 and 3.4 1into Eq. 3.9,

such that

3-6




a2y deT aw
—— : —2eagr——ce — 2p°'W — aye—
ate aw at

aeT ae a2eT
- 23 ¢ . 4+ oe)o'

aw owl  awowT

a ( aeT
—_2¢2 s— —

dt\ ow

and by applying the chain rule,

3 3eT 3 deT deT e
— — @ T e— — « @ + € —

at\ JIw dwl\ at dw a3t

and by regrouping like terms, Eq. 3.9 becomes,

32w deT ow
— : —2raq——c€ — 2p°'W — ay—
atd ow at
aeT de de
—_— 2t a ¢t——e+W + 8 ¢—
ow owT S st
a2eT 3 aeT
— 2 a +———— W ¢+ 3 o—m| — X B 3.10
3 swowT 5 swl ot

Recall that the error was defined as a vector, since there
may be several error signals to back propagate. This 1implies
that in the hidden layers, individual cells will be responsible
for summing the 1input error signals and using this sum for
updating the cell’s weights. To clean up Eq. 3.10, the following

quantities are defined:

3-7




ana

e : 1T.e 3. 11
in, in

tot ‘

"™

The upper bound, r, is the +total number of error signals
propagated to an individual cell. For instance, the upper bound
on the total error (e,q¢) Propagated to the output layer cells is
r = 1. The number of error signals propagated to the hidden
layer cells depends on the number of cells 1n layer i1mmediately
above it. The upper bound will vary from layer to layer and
remain constant within a layer. Rewriting Eq. 3.10 with Eq. 3.1t

in mind, vyields:

32y aeT aw
T, 7 Tag1*Ctot T T AW — 24—
ate ow at
deT de de
—_ 2t a ¢——e¢eW ¢+ a ¢
ow owT S at

o2eT a ( deT

—_—a . A ¢t W ¢+ Q& ¢— — . 3. 12
tot 3 swowT 5 awl at

The tllme derivatives of e are now considered. From Eq. 3.2
it 1is clear that the error 1is a function of the desired and
actual outputs. For the cases studied in this thesis effort, the
desired output 1is considered to be piece-wise continuous and
constant over the time in question. For any given input vector,

each of the output desired responses is either O or . Thus, its

3-8




P

.

time derivative is 2zero and the time derivative of the error
signal for any single output cell in the network is

at at
Since £,y 1s time dependent through #£;,(t) and w(t), the time

derivative may be expressed as a function of these time dependent

quantities. Therefore the time derivative of the error
of a single cell Dbecomes,
de of ow af af
_ s | —out, ., _out, _in |.
at awT st o#T at
in
Also note that
Oe Ofout_
awT awT
and similarly
w ow
for a single cell. Substituting Egs. 3.3, 3.44 and 3.15
3.12, the weight update rule for a single cell becomes:

signal

into




2w 3f oyt ow

— aloetot° — aAp*W — ayu‘+—

at ow at
of of

— 2.—QM1. a ..——Q.“L.' + a o

ow 3 awT 5

+ € .
tot

Differentiation of the sigmoid function

exercise and will not be covered here.

s )
a .___Q.LLI..' 4 a o=
3 awowT aw

af aw
—out, .,
awT  at
af aw
—out,__
awT a3t
is a

Appendix C describes the

3. 16

of of
—out, __in )
T at

in
of of
—out, __in .
otT at

in

straight forward

various derivatives of the sigmoid in detail. Regrouping 1likKe
terms in Eq. 3.6 results in
3w 3f out ow
0 % etot'T— — ap'W — ay.—
ate aw at
af af dw af af
—_ a.__Q_uI... _Q_I.LI.. A ‘W ¢+ a o— ¢ a .__m.__l.n
aw awT 3 5 at S a¢T at
in
alf aw acs af
e of —out, | 4 w s+ a2 o— + a .—o0ut, _in | 3.17
tot | awawT 3 S at S5 awatT ot
in
Since the artificial neural network (ANN) for this study

will be run as a computer simulation, discrete mathematics are

introduceadq. Difference equations, in lieu of differential

equations are required. The following set of approximations are

required for the transformation:

3-10




——

2w A2wy,, Awg,y — Awg

8 = '
ate At2 At
dw A'K
at At

Awy = W — wi_ g,

+

Wi = azcAt.wp + ag+Awy,

Afn 8fin

At ot

fin,k * 35°*Afip k.

At = the amount of time occurring between time step K and kK + 1.

The quantities w{( and f'j_n'x can be thought of as average values,
approximating the discrete time derivatives of wy and £, k.
respectively. Recall, that the error surface 1is changing
instantaneously with each new input vector. The estimates of the
time derivatives of wig and £, PpProvide the network with
information of how the surface is changing with time. These *time
derivatives will no doubt be used in updating the cell weights.
With these approximations, apply the first two by
substitutions and then multiply each side of Eq. 3147 by AtS
Add Awy to both sides of the equation and then apply the
approximate discrete time derivatives of wy and f;p, k. The

result is




at
Aw : (1 —a +At J+Aw — a +AtZ2.w + a .At2.¢ —out
K+ ) K 2 K 1 tot
ow |k
af af af
—_ 2+At . —out W ¢ o
ow |k awT |k K aff k in kK
n

a2 a2+
+ A‘t_oe ] ——m W + ___m_ .f.
tot e'a'T K K a'afT K in, K
in

The final approximation to the 1implementation stage concerns the

time derivative of eyo¢. Since

de afout

at at

for a single output cell, then eiot may be approximated by

ot af
e s =2+ —QUL| .,y 4 —out £ ,
tot awT |k k 3¢T K in, K
in

The final weight update equation becomes

Awg,q4 = (1 — ay )Awy — as-wy
af
v (a re + e ) —QuL
i tot tot

ow K !A
alf

32¢
4+ e . .'v + ._____Q_LU.__ .f. 3. 19
tot | awowT |k K  owagT (kx MK
in
for At = {, and %

3-12 j




g

Further reductions will be made on Eq. 3.9 for programming
convenience in section 3.5. However, Eq. 3.i9 represents the
most descriptive form of the generalized second order

approximation to Newton’s Method.

3.4. Generalized Second Order Algorithm

As eluded to earlier, Parker’s second order approximation
is a generalized version of the steepest descent and momentum
methods. From Eq. 3.19, 1t 1is readily seen that this equation
contains the steepest descent search algorithm and the momentum
method. The proper selection of learning parameters, ay, .. as,
will vyield the desired algorithm,

3.414. Steepest Descent Algorithm

If the steepest descent search algorithm 1is desired, let a,
equal a small positive number between (0, 1) and let ay equal 1.
Set the other learning parameters equal to 0. With the above
learning parameters, the single cell weight update rule is

reduced o the following:

af
Aw - a +—0Ut|..
K+t 1 aw |k tot
: 2raygcfout, k(1 — fout,k 10 d— four,k 1 fin, k-

The above equation is equivalent to Lippmann’s expression for the

change 1in welights (4:17), by using the following substitutions:

n - a-ai.

3—13




9% = fout,k*'{ 1 — fout, k 10 d — £y, k )

such that

Awg,y = Nk fyn, k.

Hence, the algorithm of Eq. 3149 1is reduced to a gradient of
steepest descent search algorithm. In addition, one of the terms
of the algorithm has been explained.

3.4.2. Momentum Algorithm

In a similar fashion, the momentum algorithm 1s obtained.
Set a4y and a, to small positive numbers between (0, !} and the
other learning parameters equal to O. Again Eq. 3149 1is reduced

and the update rule becomes:

9f
Aw : —a —ULl}.,e ¢ (1 —a )iAw .
K+1 1 ow K tot 4 K

Again, the above equation may be compared to the algorithm

Lippmann introduces ({4:7] Let

and agaln using the substitutions of section 3. 4. 1,

AWy, - r\'ak'fln.k + CrAwyg.

Again, Eq. 3149 1is reduced to obtain the momentum method and a
second term of the algorithm has been identified. Apprendix D

offers further insight +to the momentum term and possible

3-14




R

~

B,

L convergence applications.

3.4.3. Additive noise

The leakage terms introduced by Parker, not only produce a
momentum term to enhance convergence, but in addition, induce
noise into the algorithm. The terms associated with the learning

p parameters, ap, and a3, produce the effect of noise. Recall that

#" az was encorporated into the estimated time derivative of wy.
,' With this in mind, ap and a3 will be set to zero in all

applications of this study.

3.4.4, Second Order cContributions

All of the terms of Eq. 3.19 have been described with the
exception of those terms associated with asg. The Convergence
term ag controlls the amount of change 1in Awy, and
Afp. Therefore, ag also effects the time derivative of
the total error, as seen at the end of section 3.3. Therefore,
contributions {from the second order derivatives and time
derivatives are being implemented when ag 1is activated. If
further insight 1is required in understanding the various

components of Eq. 3.19, expansion of Eq. 3.7 may help.

35, Final Implementation Stage

Although Eq. 3149 1is the equation for +the final weight *
update rule, a further reduction is necessary for a computer
programmed implementation. Several temporary networkK variables
will be defined to help simplify the programming overhead. Each %

node in every layer 1is responsible for performing two passes; a

3-15 4




———_—

forward pass and backward pass. This fact will be used 1in
associating the temporary variables with the model and further
reducing the programming overhead.

In Eq. 3.9 there are several partial derivatives which must
be computed and reduced to a form acceptable for programming. In
other words, what is the partial of f,,{ with respect to w? What
is the second partial of f,,¢ with respect to w and wT ana also w
and finT? These partials must be computed in order to simplify
the programming model. Appendix C is devoted solely to the
computations of the various partials of the sigmoid function and

the results will be used here.

£ {1 — £ ) f
aw K out, K out, K in, kK

—outyj . ¢ (1 — f ) o X
OWOfT K out, K out, K

t fout,k*( 1 — fout,k )0 1 — 2fout, k ) fip, kW

f (1 - f bel 1 — 2¢f )of £T
awowT |k out, K out, k out, K in,k in, K

Applying these equations to the algorithm directly would be quite

cumbersome, hence the temporary variables. Before substituting
the above equations 1into Egq. 3.19, the following temporary

variable 1is defined. Let q

u = foyt, k'l 1t — fout, k)

3—16




where u is a common artifact generated when computing the partial
derivatives of f,y¢. Next, substitute the definitions of each

partial, along with u, into Eq. 3.19, such that

AWp,q4 = (1 — ay )-AwWwg — ap-.wy
+ ( agrerot * erot Jcuctin g
+ e of ue( 1 - 2+f )of $T ow
tot out, k in, kK in, kK K
p (U Il + ue( 1 — 244 yof oWl )op
out, K in in, K
Awg,y = (1 — ay )+Awg — ap+Wg + ( agregor * €tot Jeuefin, k
‘e ol ue( 1 — 2. ) o f o ¢T  w + wT.s
tot out, kK in, K in, K K in, k
+ usf
in, Kk

In the above equation, let

T i) T ’
v : fin k'Wk + Wefin k

where v represents the time derivative of the product of the

input and 1it’s corresponding weight, such that

Awg,q = (1 — ay )-Awyg — ap'Wwyg + ( ag-erot * €tot beuefin, k

+ e . Us{ { — 2+f ) o f eV + U+t .
tot out, K in, K in, K

3-17




Next, define
q : uregor

where q is the 3 term defined in sections 2.3.5 and 3.4.1 and the

weight update equation becomes:

Awg,y = (1 — ay )cAwyg — apewyg + aq+q+f;p g ¢+ Urergr ¥ g
+ Usegope( 1 — 2fgyut, k V°Ein, k°V * QA fin, k-

Finally, let

r : us( egor * €tot*( 1 — 2¢foyt, k )V )

and the final weight update equation becomes:

Awp,y = (1 — ay }eAwy — asewg
+ | ag+*q + r )'fin.k + Cl'f'in'k- 3. 20
Equation 3.20 represents the final form. Obviously, each

temporary variable will be computed first before EQq. 3.20 1is
computed.

3.54 Forward Pass

Parker describes the flow of signals in two directions [8]).
The input enters the bottom of the network and flows forward with
each node 1in each layer computing what Parker calls function
signals. Function signals represent the cell outputs and their
respective time derivatives. The cell outputs Dbecome the cell

3-18




P R T R T T R e
g . )
b

& inputs in the layer directly above the cell in guestion. The
‘ output time derivatives become the input time derivatives in a
similar manner. The output layer produces a function signal
which 1s immediately compared +to some desired response. The
partial derivative of the squared difference between the desired

and actual outputs is termed the error signal. The error signal

is treated in a similar manner as the function signals, but they
are back propagated. In addition, the time derivative of the
error signals 1s computed from the time derivative of the output
and propagates with the error signal.

On the forward pass each cell in each layer 1is responsible

for computing and maintaining it‘’s own copy of the following:

fout, k ° fout,k(fin, k» Wk) ° pr: e)'
1 + exp(— w +
in,k K

u = fout, k'l 1 ~ fout, k

Wi = az Wgp + ag-+Awyg,

T , _—
vV : fin, k*'Wk * Wiefipn g

The threshold (6) is the cell offset and is updated much in the
same way the weights are updated.

3.5.2, Backward Pass | ﬂ

As mentioned earlier, the cell must also be capable of

handling the backward propagation functions, see Fig. 3.1.




R

Cin1s | €in.2 | Soute | &n,ry
e i ¢ ] ' 1.
in,l in,2 out Cin.r
! ] ] *
] ] . !
1 ] }
| L] ]
Yy A 4 Yy
W, W, ..., W
1 [ 1
[} I [}
! t {1
? 1 !
Y Y Y
,c;n,h ¢'out,l- fa"n,Zo Cout,2, fin,p Cout,¢v
n,l eo«t,l in2 c'out.Z c"n,q e:mt.q

Figure 3.4 Signal Flow Through a Single Cell (8]

Therefore on the backward pass, the cell must compute the error
signals as well as their time derivatives. Figure 3.2 presents a
simple two layer network for enhancing the discussion below.
Since the algorithm used for this thesis effort 1is a
supervised bacKkprop, there must be some desired response from
which to compare the actual response. The output of each node
in the output layer will be used to compute an error signal used
for'updating the weights. Recall that the function of bacKkprop
1s to bacK propagate the partial derivatives of the quantity ¢to

be minimized. First, the total error and 1it’s approximate time

derivative received by each cell are computed, where

3-20

L.




tot

tot

Jous = output,
Jius = time derivative

!
|
Of fouh mugmy :
|

¢in = 2(desired output - f,,,,),
‘:n = —2!:":

Cell 1
i 1
1
[ N
PR —— !
1 1
Cell 2 Cell 3
fin=1,  fin=input 1, fin = input 2,
fa=0  fin=0 =0

Figure 3.2 Two Layer Network Display

The second step is to compute the output error signal

3-21

and




it’s time derivative for propagation to the next lower layer.
The output error 1is the product of the partial and the
corresponding weight and can be found by,

af
e s —out] . . of (1 — ¢ )ew q-w.

e . [
out tot af K tot out,k out, K K
in

where the results of appendix C and the temporary variables have
been applied. The partial time derivative of e,,¢ is found in

much the same way and applying the chain rule, such that

af acs als
' - ._Q.I.ll + e . ————Q-u-L W’ + __O_I.LI_. of .
out tot of tot af awT|k K af atT k 1n. kK _
in in in in

: PewWy ¢ QOW;(.

Again, see appendix C and the temporary variable definitions for
clarity.

Once egyt and it’s partial time derivative have been
defined, they can then be related to e;, of the cells of the next
lower layer and the process is repeated. The cell’s welghts may
be updated layer Dby layer during backprop or the results may be

stored and updated after the backward pass is complete.

NOTE: For ease of programming and efficiency of the code, each
layer in the multilayer perceptron will be treated as a record,
since each layer has common attributes. By attributes, it 1is
implied that each layer will have a vector of outputs, and a
matrix of weights. Remember, that +the inputs to a cell can

3-22




r

originate from the environment or from the other cells in the
layer directly beneath it as outputs from that layer. Therefore,
the inputs will be considered vectors as well. The error signals
associated with each cell will also be defined as a vector

describing the error signals of a given layer.

3.6. Initial HNetwork Conditions

A great deal of discussion has gone into the implementation
stages of the second order DbackK propagation algorithm. However,
the guestions that arise are: what is the state of the network
when training 1is initialized? wWhat 1nitial values are assigned
to the weights, thresholds and input partial time derivatives?
This section addresses each of these questions.

In answering the question of the 1initial values of the
weights and thresholds, it’s desired to have the activation level
of each cell roughly equal to 0. Thus,

T

fin'w+ ©2 0
implies that each cell within the network fires at approximately
0.5. The reason this 1is so important, is that 1if the output
cells fire close to 1 or O early in training and the desired
output is O or 1{ respectively, the networkKk may never recover and
successfully train. Consider the following argument given a
first order minimization technique. The weight update rule for
the gradient of steepest descent has the following form from
section 3.4.1:

3-23

A




9 Awyg,y = 2ragfoye, k(1 — foyut,k V)0 d — fout, k V' fin, k

Consider the output from a given cell in the output layer is ~t
and the desired is equal to 0. The desired minus the output is

“~-14, but the other difference term is ~“0. Therefore, under these

conditions little or no change occurs in the weights. However,
if each cell in the networkK is initially firing near 0.5, the
network is provided the opportunity to learn.

More information c¢an be provided by examininig the second
partial of s with respect to w and wT. The underlying idea 1is to
examine the sign of definiteness of this matrix over the entire
ensemble of training vectors. If it is possible to show that the
average second partial matrix 1is positive definite over the
entire input ensemble, then this would 1imply a surface with
upward concavity. This further implies a global minimum over the
entire ensemble of 1nput vectors considered. Appendix D
considers this for a single cell and establishes a criterion for
initializing training in a neighborhood of the global minimum for
an arbitrary training set. The result 1s provided here:

—ln(2) ¢ ¢ In(2). 3.21¢

™5
£
-

[
H
[

in, 1

It is implied in the above inequality that one of the inputs 1s
equal to 1, corresponding to the so called threshold.
Information about the input may reduce the above equation to ﬁ

strictly a function of the weights. For 1instance, the FLIR

3-24




feature vectors were normalized according to Eq. 2.14. After
normalization, the features ranged from (*-1.5, ~1.5). Selecting
a worst case scenario where all the features of a given vector

equal 1.5 (or -15), the above criterion reduces to:
n
L4 ¢ ¢ 0. 462.
—0. 462 iz;lwi

The above 1inequality of Eq. 3.21 provides a measure as to
the initial weight settings for a given cell. For 1instance, the
weights c¢ould be set randomly and uniformly Dbetween (-7, 7)),
where r is a small floating point number, if some information is
Known about the input. A test could then be performed to insure
that the above inequality is met. Randomly, setting the weights
uniformly between (~-0.45, 0.45) for the input data in this study
satisfied the above criterion, provided by Eq. 3.21.

The final guestion to be answered considers the time
derivatives of the input from the environment. No information
was providea concerning the time derivatives of the input from
the environment. Since the algorithm 1is a discrete version of
the second order linear differential equation, it will be assumed
that each 1input will Dbe constant ove.r the period of time (At)
1n question. Therefore, it 1is assumed that the networkK input
time derivatives are equal to O. It should not be assumed,
however, that the 1input to the hidden layer nodes are zero.

Recall, that the output of each layer becomes the input of the

cells in the above lavyer. It is wunderstood that the output is

3-25




changing with time, as per section 3.4,

3.7. Summary

The first several sections of this chapter is devoted to the
impementation of ParKer’s linear differential equation in Eq.
2.8. A great deal of text was devoted towards the implementing
stages to achieve a better understanding of the concepts hidden
within the mathematics. Time derivatives of +the signals were
derived in order to inform the network about how the performance
surface 1is changing with time. With +the information in this
chapter, along with appendices A, B, C, and D, most (if not all)
of the concepts have surfaced. Once all of the terms of the
final implementing equation had been derived, it was necessary to
introduce the temporary variables to ease the programming effort.
Finally, 1initial networkK c¢onditions were considered.

The following chapter provides the results of the validation
stage of the algorithm discussed in section 3.3. Chapter four
begins Dby using the algorithm derived in this section to solve
the exclusive or problem. The latter sections test the algorithm
on the doppler 1magery which has already been classified by Ruck,

to further validate the algorithm.

3-26




4, Validation of Second Order Algorithm

4.4. Introduction

In the last chapter, an extensive analysis of the second
order (SO) algorithm implementation was realized. In this
chapter, it is desired to focus on the validation stage of the
classifier applying this new algorithm. The validation stage
will consist of two parts. The first involves application of the
SO back propagation algorithm in a network used to solve the
exclusive OR (XOR) problem. The second stage 1nitiates the Qquest
of pattern classification beginning with set of feature vectors
generated from doppler 1imagery. Ruck used these same features
with moderate success [i2]. He was able to attain near perfect
classification with the training data and roughly 757
classification of the test data [i2). These facts add validity
to the input feature vectors. The generalized second order
algorithm developed in this study, will allow the comparison
between first and second order techniques.

The next section begins with a description of the XOR
problem set up. The 1input and learning parameters used are
provided 1in this section, as well as the convergence results.
Section 4.3 Dbegins the pattern classification effort for this
study. Within +this section, the 1input feature vectors are
described and formatted. In addition, the networK architecture
and learning parameters are described for the gradient of

steepest descent, momentum, and second order methods. The




w

i

results of the pattern classification of +the doppler imagery
feature vectors follow.

4.2. The Exclusive OR Probiem

The results of this section are basically a reproduction of
the results generated by ParkKer [8]. Since the algorithm used
for this study generalizes to the first order methods of
steepest decent and momentum, the problem will be attempted using
both second and first order techniques. The results will be
formulated in a table based on the number of 1terations until
convergence.

4,24 Input Data and NetworK Parameters

The 1dea 1is to train the network on a fixed set of 1nputs
which are listed in Table 4.{, along with the desired responses.
The 1inputs will be shown to the networkK as in Fig. 4.1,
iteratively until the desired outputs are obtained. The output
will be measured indirectly by monitoring the error. The error
1s defined as the difference between the desired output and the
actual output. Therefore, the criterion used 1n validating the
model will be the error. By minimizing the error, the squared

error will surely follow.

N



gk

Table 4.t Input Pattern Vectors and Desired Response for XOR

Vector £ £ Desired Response
in. & in. 2
1 0.1 0.1 0.1
2 0.9 0.1 0.9
3 0.1 0.9 0.9
4 0.9 0.9 0.1
fous = output, €in = 2(desired output - f,.,),

|
fly, = time derivative : el = =21",

Of fout, roughly |,

[}

fia=1,  fia=inputl, fin = input 2,

|"u=o .",.=0 ‘.'“:0

Figure 4.1 XOR Network Architecture

The initial weilight values were set to small random numbers

in the range (-0.5, 0.5). This range more than meets the




. —

criterion provided by Egq. 3.21. The contents of Table 4.2 list
the values of the 1learning parameters used 1in solving this
problem.

An extensive search of the optimum learning parameters was
not performed. It was only desired to prove that the network and
it’s SO back propagation algorithm could solve the XOR problem.
By solving the problem, it is implied that the network found the

optimum path for the weights to follow. When the error is

Table 4.2 Learning Parameter Values

Method a a a a a
i 2 3 4 S
Gradient 0.1 0.0 0.0 1.0 0.0
Momentum 0.1 0.0 0.0 0.1 c. 0
Second Order 0.1 0.0 0.0 0.1 0. 05

reduced to some predetermined criterion, the networkK concludes
it’s training, and the optimum weight values are obtained. The
error criterion or the difference between the desired and actual
output was set to O.. The c¢ritericon must be met or surpassed on
four successive iterations, allowing the network the opportunity
to classify all four inputs and meet the criterion.

4.2.2 Convergence Results

The results tabulated 1n Table 4.3 show that the network
weights found the optimum path for convergence. This implied
that the network can perform the XOR 1logic function. The

4-4

.




average number of iterations were generated from 20 test runs.

Table 4.3 Comparison Between First and Second Order Techniques

Method Gradient Momentum Second Order

Average Number
of Iterations >20, 000 S4T74 5054

The results show that on average, the SO method slightly out
performed the momentum method. In addition, both methods greatly
exceeded the performance of the gradient of steepest descent
method. The gradient of steepest descent method was extremely
slow in learning and terminated after 20,000 iterations, with the
error slowly decreasing.

The results appear to be very promising for extending the
application of the SO approximation to more difficult problems.
The following section addresses such a problem. The fact that
the SO approximation method exceeded the performance of the first
order methods, in no way suggests that it will exceed
performances on more difficult problems. In particular, when
considering the problem of pattern classification where the
inputs may be great in number. Other considerations along this
same line, are the number of layers required, the number of nodes
and ultimately the number of weights required to solve the
problem of machine recognition of images.

The ADA programming code used in implementing the XOR

4-5

———

—9




algorithm 1is found in appendix F.

4.3. Classification of Doppler Imagery

In the last section it was shown that the SO approximation
method could in fact be used in solving the XOR problem. The
results represent a promising indication that the applications
may Dbe extended using this method. Therefore, in this section,
features extracted from doppler imagery will be used as the input
t0o a multilayer perceptron. The multilayer perceptron will apply
the SO Dback propagation method, as well as the first order
methods for comparison.

The following subsection describes the features 1n a Iittle
more detail. Next, the specifics of the networkK architecture are
discussed, followed Dby some comments on the values used for the
learning parameters. The final subsection discusses the results
and maKes a comparison between the first and second order back
propagation techniques.

4.34 Input Feature Data

The features extracted from the doppler imagery consisted of
normalized moment invariants. To the network, the features were
actually a set of vector components of normalized moments. Each
vector, or example of a target, consisted of 22 features, and 1in
general, the final version of a machines representation of an
object in an 1image. The targets to Dbe classified 1included tanks
at four different aspect angles, jeeps, 2.5 ton trucks and

petroleum, o0il, and lubricant (POL) tanKers. The data base of




target feature vectors heavily favored the tanks. Table 4.4

breaks down the number targets considered for each class.

Table 4.4 Target Data Base for Classification

Class # Training Samples # Test Samples
Tank 43 17
POL 4 2
Jeep 6 3
Truck 4 2

Roughly two thirds of the available feature vectors were used 1in
training the network, while the remaining vectors were used for
testing the network once trained.

4.3.2. Network Architecture and Learning Parameters

The multilayer perceptron will consist of three layers,
which will accept 22 1inputs and output 4 classes. Table 4.5
describes the network architecture in some detail. Table 4.6
provides the learning parameters used for classifying the doppler
imagery feature vectors. Several different combinations of
learning parameters were used for training. This search was not
exhaustive, since there is an enormous number of these
combinations. However, the parameters 1listed in Table 4.6
provided the best combination, of those +tried, as far as

classification accuracy and error performance were concerned.

4-7




Table 4.5 Network Architecture Data

Number of Features 22

Layer One Nodes 20
-

Layer Two Nodes 6

Number of Classes 4

Table 4.6 Network Training Data

Parameter Gradient Method Momentum Method SO Method
a1 0.3 0. 3 0.3
a 0.0 0.0 0.0
2
a 0.0 0.0 0.0
3
a 1.0 0.1 0.1
4
a 0.0 0.0 0.1
3
Number of
Iterations 60, 000 60, 000 60, 000
Data Output
Interval 2, 000 2, 000 2, 000

The text to follow provides the results generated from
target classification of the doppler imagery. Averasge
classification accuracy and the average total output error 1s

provided, along with the networkK performance on 1ndividual

classes.




P 4.3.3. Classification Results
The graphs depicted Dbelow are the results from the

classification of the feature vectors generated from doppler

L imagery. The results are displayed in terms of averacge
classification accuracy versus the number of iterations for both
the first and second order methods., The log of the average total
— output error versus the 1log of the number of iterations was

measured, as well. In addition, a typical instance of

Cclassification accuracy for each class 1is listed below. An
instance implies that the data was not averaged. The graphs
below are presented in order of test results rather than by
method, for ease of comparing each method.

4.3.34 Average Classification Accuracy

The average classification accuracy was taken from 10
complete passes through the network, since 1t was desired to
obtain an average network performance. Given the randomness of
the initial state of the network, the networK does not perform 1in
exactly the same way with each training attempt. Each pass
through the network will re-initialize the networkK parameters and
begin training all over again. The specific characteristics
desired for comparison were the convergence rate and stabllity of
each method.

The criterion used 1in determining a correct response, and
thus the accuracy of the classifier, was based on the actual
output values of the nodes in the output layer. The desired node

output for a correct classification 1s {, while all the other

4-9




-

ACCURACY

node outputs are 0. Therefore, the criterion defines the output
response of the desired node to fire at 08 or above, while the
other nodes fire at 0.2 or less.

Figures 4.2, 4.3 and 4.4 display the average training
accuracy of the gradient of steepest descent, momentum and second
order methods respectively. Figures 4.5, 4.6 and 4.7 display the

average test accuracy.

0 10000 20000 30000 40000 50000 60000
NUMBER OF ITERATIONS
AVERAGE NETWORK TRAINING PERFORMANCE FOR GRADIENT METHOD

Figure 4.2 The networK achieved roughly 92/ accuracy on training
data.

4-10




ACCURACY

0 10000 20000 30000 40000 50000 60000
NUMBER OF ITERATIONS
AVERAGE NETWORK TRAINING PERFORMANCE FOR MOMENTUM METHOD

Figure 4.3 The network achieved 98/ accuracy on training data.

ACCURACY

0 10000 20000 30000 40000 50000 60000
NUMBER OF ITERATIONS
AVERAGE NETWORK TRAINING PERFORMANCE FOR SECOND ORDER METHOD l*

Figure 4.4 The network achieved 98/ accuracy on training data.

4-11 |




ACCURACY

Figure 4.5 The network achieved 75/ accuracy on the test data.

ACCURACY

0 10000 20000 30000 40000 50000 60000
NUMBER OF ITERATIONS
AVERAGE NETWORK TESTING PERFORMANCE FOR GRADIENT METHOD

0 10000 20000 30000 40000 50000 60000
NUMBER OF ITERATIONS
AVERAGE NETWORK TESTING PERFORMANCE FOR MOMENTUM METHOD

iR,

Figure 4.6 The networK achieved 78/ accuracy of test data.

4-12




ACCURACY

0 10000 20000 30000 40000 50000 60000
NUMBER OF ITERATIONS
AVERAGE NETWORK TESTING PERFORMANCE FOR SECOND ORDER METHOD

Figure 4.7 The networkK achieved 78/ accuracy of test data.

The momentum and second order methods slightly exceeded the
performance of the gradient of steepest descent method on the
test and training data. On the average, there was little
difference Dbetween the momentum and second order methods.
However, close examination of the average classification accuracy
reveals that the second order method initially converges slightly
quicKer than the momentum method. Over the last 10,000
iterations the momentum method seemed to settle down and provide
a consistent accuracy. On the other hand, the second order
method continued to c¢limb, but in a slightly erratic manner.

4.3.3.2 Average Total Output Error

This section presents the results of the average total
output error of the network. The error was defined to the
magnitude of the difference between the desired output and the

4-13




actual output. The total output was merely the error sum of all
of the output nodes. The total output error was averaged over
the entire set of training (or testing) input feature vectors,
and ultimately over each pass through the network. The log of
the average error was graphed versus the log of the number of
iterations. It was desired to determine what trends, if any, the
average error displayed for both the training and test data sets.
Again, Figs. 4.8, 49 and 440 reflect the +training results of
the gradient, momentum and SO methods, respectively. Figures

441, 4.2 and 4.43 display the results of the test data.

LOG(ERROR)

10000
LOG(NUMBER OF ITERATIONS)
AVERAGE NETWORK TRAINING PERFORMANCE FOR GRADIENT METHOD

Figure 4.8 Note the smooth (almost monotonic) decreasing error.

4-14




LOG(ERROR)

10000
LOG(NUMBER OF [TERATIONS)
AVERAGE NETWORK TRAINING PERFORMANCE FOR MOMENTUM METHOD

Figure 4.9 The 1initial error 1is dropping off smoothly, Dbut
becomes erratic as training continues.

LOG(ERROR)
I
|
b
J
t
|
I
i
|
i
|
|
I
|
|

o
10000
LOG(NUMBER OF ITERATIONS)

AVERAGE NETWORK TRAINING PERFORMANCE FOR SECOND ORDER METHOD e
Figure 4.0 The initial error 1is dropping off smoothly., Dbut ‘
becomes erratic as training continues,

4-15
4




R
S
g
g
2| I o
10000

LOG(NUMBER OF ITERATIONS)
AVERAGE NETWORK TESTING PERFORMANCE FOR GRADIENT METHOD
Figure 4.11 Note the 1initial smooth descent. In addition, notice

that the relative flat region 1n the middle and then a slightly
erratic descent over the last 30,000 11terations.

10000
LOG(NUMBER OF I(TERATIONS)
AVERAGE NETWORK TESTING PERFORMANCE FOR MOMENTUM METHOD

Figure 4.2 The 1initial error drops much quicker then the
gradient method and becories erratic as training continues.

4-16




10000
LOG(NUMBER OF ITERATIONS)
AVERAGE NETWORK TESTING PERFORMANCE FOR SECOND ORDER METHOD

Figure 4.13 The 1initial error drops much quicker then the
gradient method and becomes erratic as tralining <continues.

Again, the momentum and second order methods slightly exceed
the average error performance of the gradient of steepest descent
method. In addition, the momentum and second order methods for
the most part performed on a comparable Dbasis. Over the first
nalf of training, the error decreases rather smoothly, after
which the error behavior of the momentum and second order methods
becomes erratic. This may be explained by the followling
argument. If the minimum of ;he error surface lies 1n a
relatively flat hyperplane, then there could be many solutions
(optimum weight values) for convergence. Since the 1nstantaneous
error surface 1s changing with each input, the networkK 1s simply
trying to find an exact solution. This may be 1nterpreted, as

the network attempting to memorize the input data. The




classification results of +the FLIR imagery in the following
chapter further support this idea. The gradient of steepest
descent method has a little more stability over the last half of
training, as shown in Figs. 4.8 and 4.1, The reason for this,
is that the weights are being updated Dby a small constant
proportion of the partial derivative. This 1is slow gradual
process and the network has not quite converged to the minimum;
it’s still learning.

4.3,3.3 Target Accuracy

The data in this section reflect a typical instance of the
actual target accuracy provided by all three methods. Agalin
training and test data results are displayed the tables Dbelow.
The data gathered and displayed in the tables below were actually
generated from the network output. The tables are presented in
the form of a Network Confusion Matrix. Not only was it desired
to determine the actual target accuracy, but this data may
provide some 1insight as to the worth of the feature vectors
discriminating the various targets.

Table 4.7, 4.8, and 4.9 list the results from the training
data, while Table 4.10, 4.i1, and 4.12 display the results form

the test data.




Table 4.7 Training Data Confusion Matrix for Gradient Method.
Reads row by row left to right. The network failed to classify
the following number of feature vectors: 2 tankKs and 1 each POL,
Jeep, and truck.

Class Tank POL Jeep Truck Accuracy
Tank 41 0 ] 0 95, 3%
POL 0 3 0 0 T5%
Jeep 0 0 5 o 83. 34
Truck 0 0 0 3 757

Table 4.8 Training Data Confusion Matrix for Momentum Method.
Reads row by row left to right. The network failed to classify 1
POL feature vector.

Class Tank POL Jeep Truck Accuracy
Tank 43 0 o 0 1007
POL 0] 3 0 (o] 757
Jeep o o 6 0 1007
—‘Truck 0 0 0 4 100%
-
4-19




Table 4.9 Training Data Confusion Matrix for Second Order Method.
Reads row Dby row left to right. The network failed to classify i
POL feature vector.

row by row left to right.
were classified as a tank,

that if a network 1is trained

long enough,

Class Tank POL Jeep Truck Accuracy
Tank 43 0 o 0 1007
POL 0 3 o 0 757
Jeep o (0] 6 (o] 1007
Truck 0 0 (0] 4 100/
The training results 1n all the tests continue to enhance the

at the very least memorize the input training set.

Table 4.10 Test Data Confusion Matrix for Gradient Method.
Notice that two jeep feature vectors
while the other was classified as a

Class Tank POL Jeep Truck Accuracy

Tank 16 o o 0 94. 17

POL 0 0 0 (0] o)

Jeep 2 o 0] 1 o/

Truck 0 0] 0 1 507
4-20

it will learn or




Table 4.11 Test Data Confusion Matrix for Momentum Method.
Reads row by row left to right. Notice that two Jeep feature
vectors were classified as a tanK, while the other was classified
as a truck.

Class Tank POL Jeep Truck Accuracy
Tank 17 0 o) (o) 1007
POL o 0 0 0 (o4
Jeep 2 ) o] 1 (O )4
Truck o o o 2 1007

Table 4.42 Test Data Confusion Matrix for Second Order Method.
Reads row by row left to right. Notice that +two jeep feature
vectors were classified as a tank, while the other was classified
as a truck.

Class Tank POL Jeep Truck Accuracy
Tank 17 0 0 0 1007
POL 0 0 0 0 o7
Jeep 2 O 1) 1 o4
Truck 0 0 0 2 1007

It should not be too surprising to observe that the second
order and momentum methods perform slightly better than the

gradient of steepest descent method, given the earlier results.

4-21

e s

-




The gradient of steepest descent method will eventually reach the
performance levels of the other two methods given more training
iterations.

The Confusion Matrices above reinforce the results provided
by Ruck [12). The results, in all of the Test Data Confusion
Matrices, confirm RuckK’s original hypothesis [12]. The small
number of training features (other than tanks) did not provide
enough information for the network to properly segment the input
decision space. However, even though the second order algorithm
performed as well as the momentum method, 1t did not provide any

improvements.

4.4, Summary

The first stage of validation was to show that the SO
algor_lthm proved successful 1in solving the XOR problem. The
proof Dbasically duplicated, as well as verified the results
found by ParkKer [8]. The SO approximation not only solved +the
XOR problem, but provided faster convergence on the average. The
ability of the SO algorithm to classify feature vectors
generated from doppler imagery, hinted that the algorithm c¢ould
be used on other types of classification features. It was found
that the momentum and second order methods slightly exceeded the
performance of the gradient of steepest descent method.
Furthermore, the second order and momentum methods performed on a
comparable level,

A discussion of the general results of this chapter, and

4-22




those in chapter 5 will be entertained in chapter 6, within the
discussions section. The next chapter is devoted to the
classification of features generated from Forward LooKing

Infrared Imagery.




5. Classification Results of Forward Looking Infrared Imagery

5.1. Introduction

The results of chapter 4 conclude that the second order
minimization technique proved to be relatively successful. This
chapter concerns various classifications of features generated
from forward 1ooKing infrared (FLIR) imagery. As mentioned
earlier 1in chapter two, other types of features, as well as
moment invariants, will be considered for classification.

The next section of this chapter deals directly with the
classification of those features generated for comparison with
the Bayesian classifier. This classification effort will be
based on target (TGT) and non-target (NT) recognition. The
features selected for classification were the normalized versions
of the Dblob length to width ratio, blob relative mean intensity,
and blob standard deviation of the intensity (section 2.2.2).

The following section concerns the classification of the
moment invariant feature vectors. The same comparisons drawn for
the doppler 1magery in chapter 4, will be wused again 1in this

section for the FLIR imagery.

5. 2. Target and Non-Target Feature Classification

There were many feature vectors avallable for
classification and approximately 75% of each <class was used for
training. Of the 819 feature vectors available for input, 615

were used for training; the others made up the testing data base.

5-1




k 5.2.1 Input Feature Data

Objects making up the TGT class consisted of tanKs (TA),
: trucks (TR), APCs (AP), and jeeps (CJ). There were also several
L features generated from the combination of a tank and jeep (TC).

The two targets were too close together to Dbe resolved by the

segmentation process. Table 5.1 Dbreaks down the number of
samples provided by each TGT, as well as providing the number of

NT samples, for both training and testing.

Table 5.1 TGT and NT Sample Breakdown

Class # Training Samples # Testing Samples
TA 60 17
TR 80 25
AP 85 28
CcJ 25 10
TC 15 8
TGT Total 265 88
NT 350 116

The raw features generated from the FLIR 1imagery, consisted of a

wide range of values. In order to prevent the larger valued
features from biasing the network, a normalization scheme was
required. An attempt at computing a linear normalization scheme, *

pPlacing all the data within the unit hypercube, failed to produce

5-2




—

desired results. The networK failed miserably when attempting to
train on, and classify the feature vectors. This failure
prompted an attempt at another normalization scheme. The
training feature vecters were normalized to a O mean vector and a
standard deviation vector of 1, as described in section 2.2.1.
This normalization scheme proved to be much more successful then
the previous scheme and the results are provided below 1n section
5.2.3.

The notion that the first normalization scheme failed and
the second was somewhat successful, may provide some 1nsight as
the function of neural net classifiers. It appears that the
networK, not only cares about the magnitude of each vector, but
in addition cares a great deal about the angle between vectors,
It appears from this argument that the network 1s functioning as
A nearest neighbor classifier.

5.2.2. NetworkK Architecture and Learning Parameters

The network architecture used for classifying this set of
feature vectors 1s described 1in Table 5.2. Table 5.3 describes

the network training data for all three minimization techniques.

Table 5.2 NetworK Architecture Data

Number of Features 3

Layer One Nodes 50

Layer Two Nodes 20

Number of Classes 2
5-3




Table 5.3 NetworK Training Data

Parameter Gradient Method Momentum Method SO Method
a1 0. 25 0. 25 0. 258
a 0.0 0.0 0.0
2
a 0.0 0.0 0.0
3
a 1.0 0.3 0. 3
4
a 0.0 0.0 0.1
5
Number of
Iterations 200, 000 200, 000 200, 000
Data Output
Interval 4, 000 4, Q00 4, 000

The welghts and thresholds were 1nitialized to values wilithin the
interval (-0.45, 0.45) using a uniform random number generator.

5.2.3. Classification Results

This portion of the text provides the classification results
of the neural net classifier. The instantaneous classification
accuracy versus the number of iterations 1is provided below. Due
to the large number of input training vectors and the enormous
number of training 1terations required, the results were not
averaged. The 1log error 1is also considered, along with +the
tally on the TGT and NT lndividual accuracies. Again
comparisons petween the different methods will be drawn for both
the training data and testing data. In addition, the performance
results of the Bayesian classifier are presented 1n this sectlon

5-4




as well.

5.2.34 Instantaneous Classification Accuracy

For the neural net classifier, the same criterion as the one
used in section #4.4.31 1is used again here. The desired output
node must fire greater than or equal to 0.8, while the remaining
nodes fire at 0.2 or less. By wusing this criterion, the neural
network classifier has somewhat of a disadvantage, when compared
toc the Bayesian classifier. Recall that the Bayeslan classifier
uses maximum a posteriori decision criterion. This 1s a more
lenient c¢riterion than the one placed on the neural network
classifier. Appendix E considers a comparison between the +two
classifiers, given a more lenlient criterion placed on the neural
net classifier.

The results of each method follows, with the training data
first, followed by the testing data. The results from the
Bayesian classifier are provided next and comparisons between the
two classifiers conclude this subsection. Figures 5.1, 5.2, and
5.3 consider the training data, while Figs. 5.4, 5.5 and 5.6

consider the test data.

5-5

.



! ‘
! |
3 f
- |
|
> b i
= j !
P I AN ‘ i -
!
-
|
O |
0 30000 60000 90000 120000 150000 180000 210000

NUMBER OF ITERATIONS
NETWORK TRAINING PERFCRMANCE FOR GRADIENT METHOD

Figure 54 In comparison with Figs. 52 and 5.3, the gradient
method 1s slower 1n convergence, reaching approximately 82/
classification accuracy.

ACCURACY

0 30000 60000 90000 120000 150000 180000 210000
NUMBER OF ITERATIONS
NETWORK TRAINING PERFORMANCE FOR MOMENTUM METHOD

Figure 5.2 The network achieved over 87/ accuracy on training
data.

5-6




ACCURACY

0 30000 60000 90000 120000 150000 180000 210000
NUMBER OF ITERATIONS
NETWORK TRAINING PERFORMANCE FOR SECOND ORDER METHOD

Figure 5.3 The networK achieved over 87/ accuracy on training
data. The second order method reached this accuracy faster than

the other two methods

ACCURACY

(@)
P S

60000 90000 120000 150000 180000 210000
NUMBER OF ITERATIONS
NETWORK TESTING PERFORMANCE FOR GRADIENT METHOD

0 30000

Figure 5.4 The test data accuracy was poor, reaching only 62/

5-7




1
8|— S
: °| r SVASPVAS Y wival =it
2 - - — - _
0 3 . |
0 0000 60000 90000 120000 150000 180000 210000

NUMBER OF ITERATIONS
NETWORK TESTING PERFORMANCE FOR MOMENTUM METHOD
Figure 5.5 The network averaged roughly 607 accuracy over the

last 30,000 1iterations. Not much improvement over the gradient
method.

!

8l - - R
% 6 -
3
2 4 —
2 — -
0
0 30000 60000 90000 120000 150000 180000 210000

NUMBER OF ITERATIONS
NETWORK TESTING PERFORMANCE FOR SECOND ORDER METHOD

Figure 5.6 The network averaged over 65/ accuracy over the last
30,000 1iterations, revealing a distinct 1mprovement.

5-8

R




P Again, the momentum and second order methods continue to
exceed the performances of the gradient of steepest descent

method, but only slightly. The dJdifferences between the momentum

and second order techniques, again are minimal. However, close
examination of the data reveals that the second order method
begins to exceed the performance of momentum method at 30,000
iterations for the training data. The second order method also
has a distinct advantage over the momentum method during the last
30,000 1i1terations. These same observations are carried over 1into
the test data results once the network reaches 60,000 iterations.
Although the results as a whole were not terribly exciting, the
fact that the second order method provided better accuracy, 1n
fewer number of 1iterations 1is significant. However, the network
rerformance has not been averaged and these results should not be
taken out of context. More testing 1s required, such that the
network performance may be averaged. In addition, 1t would be
desirable to increase the number of features.

5.2.3.2. Average Total Output Error

The same criterion for determining the average output error

in section 4.4.3.2 1s used here. The average total output error

was measured only for the +training data of all three methods. 1
*’ The training error 1is given so that the decreasing trends may be *

observed and verified.




6 \{‘il(f { i | ‘

5 —
P

P

4 -
|

= TR
83 A B
o ; |
L= | {;i!
8 : V!!l!
——d ‘ i]!\:
AN

R
IR

I

10000 1E+05

LOG(NUMBER OF ITERATIONS)
NETWORK TRAINING PERFORMANCE FOR GRADIENT METHOD

Figure 5.7 HNotice that the error plot 1s much smoother than in
Figs 5.8 and 5.9.

b - —
St--4-—= - e
B - e e — o TN T e e : -

@

o

] [ - :

g 1
2 R e - ]

10000 1 £405
LOG(NUMBER OF ITERATIONS)
NETWORK TRAINING PERFORMANCE FOR MOMENTUM METHOD

Figure 5.8 Notice the smooth 1initial reduction. Although rough
in the latter training stages, the error continues to decrease.

5-10

B VR |




r: - " T ———

10000 1E405
LOG(NUMBER OF ITERATIONS)
NETWORK TRAINING PERFORMANCE FOR SECOND ORDER METHOD

Figure 5.9 Although rough, the error continues to decrease over
the course of +training.

Here again, the momentum and second order methods are
slightly more successful than the gradient of steepest descent
method. As noted earlier, there 1s still minimal differences
between the momentum and second order methods. The error was
extremely unstable, but decreasing none the less. Averaging the
data would have smoothed the results quite a bit. Again, further

testing 1s required.

Notice that the roughness, 1n later +training 1iterations,
appears more significant with the second order method, than | q
either of the other two methods. In turn, the momentum method 1is
rougher than the gradient method. Again, part of this would be
suppressed by averaging. However, the results may further *

suggest another reason. The choice of learning parameters may

5-11




VAN ' e

not Dbe suitable for decreasing the error in an efficient manner.
This suggests that the learning parameters may also have to

updated at various stages 1in training, to enhance learning.

5.2.3.3. Neural Net Classifier versus Bayesian Classifier

The following tabulated results demonstrate the comparisons
of classification accuracy Dbetween the statistical Bayesian
Classifier and the neural net classifier. The results are broken
down in Table S5.4. Each method of the neural net classifier 1is
considered, after the network had achieved 200,000 tra:ning
1terations. The results provided below are Just typical
instances of each method; the results have not been averaged.
Again, Keep in mind that the criteria used for each classifier 1s
different, with neural net classification criterion being much
more stringent. Appendix E demonstrates a more comparable
criterion.
Table 5.4 Classification Accuracy of HNeural Net Classifiers

versus the Bayesian Classifier. (i) Gradient Method, (2) Momentum
Method, (3) Second Order Method, (4) Bayesian.

Accuracy

Class (1) (2) (3) (4)

TGT Training T73. 6% 81. 47 az2. 8% 80. 37

NT Training 83.1x 87. 0/ 86. 67 70. 67

TGT Testing 57. 9% 61. 47 64, 87 76. 9%

NT Testing 57. 8% 62. 2% 64, T/ T4, TV




The neural net classifier exceeds the performance of the
Bayesian on the training data and the roles are reversed for the
test data. It 1is Dbelieved, that by increasing the number of
features, this may provide more information to the classifiers,
and especially to the neural net classifier. The neural net
classifier 1learns by example, more examples, then more
information 1is provided to the net. In other words, the net
learns more about its environment. Thus, the net would have more

of an opportunity to extract the essence of a particular object.

5.3. Moment Invariant Feature Classification

This section concerns the classification of the moment
invariant features. The following subsection describes the
input training data. Next, +the network architecture 1s
discussed, followed by the classification results.

5.3.4. Input Feature Data

The classes considered for this study c¢onsisted of tanks
(TA), Trucks (TR), and armored personnel carriers (AP).
Initially, there were targets generated from +two fields of vVview,
narrow and wide. The narrow field of view consisted of 3.43
degrees in the horizontal and 2.57 i1n the vertical. The wide
field of view consisted of 10,32 degrees 1n the horizontal and
7.74 degrees 1n the vertical. For reasons to be explained later,
the narrow field of view objects were used exclusively. There
were 104 feature vectors, of which 75/ were used for training,

while the remainder were used for testinsg. Table 5.5 breaks down

5-13




the number of samples for each category for the narrow field of

view targets.

Table 5.5 Target Data Base

Class # Training Samples # Test Samples

TA 25 7
TR 25 5
AP 25 17

There was a relatively even distribution of vectors describing
each target, allowing an even distribution of the training data,
as opposed to the breakdown listed in Table 4&4.4, In general,
the more examples of an object the network has to train on, the
better chance the networkK has of learning that object.

5.3.2. Network Architecture and Learning Parameters

The multilayer perceptron consists of 3 layers, which will
receive 36 1input features and output 4 classes. Table 5.6
describes the network architecture, while Table 5.7 defines the

predetermined learning parameters,




Table 5.6 NetworkK Architecture Data

{ Number of Features 36
- Layer one nodes 27
Layer One Nodes 9
Number of Classes 3

Table 5.7 Network Training Data

{
Parameter Gradient Method Momentum Method SO Method
a 0.1 0.1 0.1
1
'i a 0.0 0.0 0.0
2
a 0.0 0.0 0.0
3
a 1.0 0.1 0.1
4
- a5 0.0 0.0 0.1
Number of
Iterations 20, 000 20, 000 20, 000
Data Output
Interval 400 400 400
. Many combilnations of learning parameters were tried, Dbut the

search was not exhaustive. The learning parameters listed in the

above table provided the best results.

5-15




5.3.3. Classification Results

The same comparisons as those made 1n section 4.4.3.4 will
again be drawn in this section for the FLIR imagery features.
The average classification accuracy, as well as 1log error plots
are considered. Again, results of all three minimization methods
will be compared.

5.3.3.4. Average Classification Accuracy

Here again, the same criterion used for classification 1in
section 5.2.3.4, 1s used for these accuracy results. Initially,
both wide and narrow field of views were used for
classification. However classification accuracies never exceeded
637 on the training data. The 1mages generated from the wide
field of view produced poor target resolution. Targets were not
distinguishable from non-target Dblobs, much less from one
another, to the human observer. The results of removing those
features segmented, from the wide field of view 1images, from the
target data Dbase are displayed Dbelow. Figures 5.10, 5.11 and

5.12 display the average training accuracy.

5-16




ACCURALY

ACCURACY

|
8
6]
4
) S
0

0 3000 6000 9000 12000 15000 18000 21000

NUMBER OF ITERATIONS
AVERAGE NETWORK TRAINING PERFORMANCE FOR GRADIENT METHOD
Figure 5.i0 The network achieves accuracies just under 957,
!
0 3000 6000 9000 12000 15000 18000 21000

NUMBER OF ITERATIONS
AVERAGE NETWORK TRAINING PERFORMANCE FOR MOMENTUM METHOD

Figure 5.1 The networK achieves accuraclies of 98/,

S-17




ACCURACY

0 3000 6000 9000 12000 15000 18000 21000
NUMBER OF ITERATIONS
AVERAGE NETWORK TRAINING PERFORMANCE FOR SECOND ORDER METHOD

Figure 5.2 The networkK achieves accuracies of 98/

Below, Fig. 5.43 displays the first 4000 1iterations for each

method on the same graph for a better comparison.




ACCURACY

~
~

-
~  Gradient

0 500 1000 1500 2000 2500 3000 3500 4000
NUMBER OF ITERATIONS
COMPARISON OF AVERAGE NETWORK TRAINING PERFORMANCE

Figure 5.13 The momentum and second order methods clearly exceed
the rerformance of the gradient of steepest descent. In
addition, notice that the second order method on the average
converges somewhat faster than the momentum method.

Figures 5.14, 5.15 and 5.16 represent the test data

accuracies of each method.




v

ACCURACY

0 3000 6000 9000 12000 15000 18000 21000
NUMBER OF ITERATIONS
AVERAGE NETWORK TESTING PERFORMANCE FOR GRADIENT METHOD

Figure 5.4 The network achieves close to 657 accuracy.

ACCURACY

0 3000 6000 9000 12000 15000 18000 21000
NUMBER OF ITERATIONS
AVERAGE NETWORK TESTING PERFORMANCE FOR MOMENTUM METHOD

Figure 5.5 The network achieves 8%/ accuracy. Notice how the
accuracy deteriorates over continuous training.

5-20

AL




[ T ‘ ; | .
| | ’ { ; !
. M , -
3 : 1 ‘
2 4 ' e ]
2 - — ‘ —~
0
0 3000 6000 9000 12000 15000 18000 21000

NUMBER OF ITERATIONS
AVERAGE NETWORK TESTING PERFORMANCE FOR SECOND ORDER METHOD

Figure 5.16 The networK achieves 8%/ accuracy. Notice how the
accuracy deteriorates over continuous training.

Figure 5.17 displays all three plots over the first 4,000

iterations for the test data.




ACCURACY

0 500 1000 1500 2000 2500 3000 3500 4000
NUMBER OF ITERATIONS
COMPARISON OF AVERAGE NETWORK TESTING PERFORMANCE

Figure 5.17 The momentum and second order methods clearly exceed
the performance of the gradient of steepest descent. In
addition, notice that the second order method performs a little
better than the momentum method.

Once again, the gradient of steepest descent has faililed +to
perform on a comparable level with the other two minimization
techniques. In the case of the doppler 1magery, there was not
the significant difference between the different techniques, as
observed here with the FLIR 1magery feature vectors. A closer
looK at the accuracy plots, reveals that the SO method 1initially
converges a little faster than the first order momentum method,
as shown 1in Fig. 543 and reinforced 1in Fi1g.5.17.

In Figs. 5.5 and 5.16, observe that after about 1,200 or so

training iterations the test data accuracy begins to deteriorate.

This phenomenon may be explained more clearly by analyzing the

5-22




average total output error.

5.3.3. Average Total Output Error

Again, the average total output error 1s defined exactly the
way it was in section 4&.4.3.2. However, the total output error
was averaged over 75 feature vectors for the training set ana
averaged over 29 vectors for the test set. The log error will be

plotted for the training data and test data.

LOG(ERROR)

1000 10000
LOG(NUMBER OF ITERATIONS)

AVERAGE NETWORK TRAINING PERFORMANCE FOR GRADIENT METHOD

Figure 5.18 Notice the smooth descent over all

training
iterations.

5-23




—

LOG(ERROR)

1000 10000
LOG(NUMBER OF ITERATIONS)
AVERAGE NETWORK TRAINING PERFORMANCE FOR MOMENTUM METHOD

Figure 5.19 Notice the reduction 1n error over the gradient
method.

LOG(ERROR)

1000 10000
LOG(NUMBER OF ITERATIONS)
AVERAGE NETWORK TRAINING PERFORMANCE FOR SECOND ORDER METHOD

Figure 5.20 Note the minimal difference between the momentum and
second order methods.

5-24




Notice, that in each graph the log of the error 1s basically
P a smooth decreasing curve to about 1,200 training 1lterations,
after which the curve becomes very unstable. The average output

error for the test data, will provide a bit more insight to this

8 peculiarity. The average output error for the test data will
also support the information contained in Figs. 5.5 and 5.16.
-
i ‘
. Tt
o ‘ ‘ ' -
, B e
I
. 5 A .l.,_:. _+ .i [ P = - e . - -
= o
8 ‘ ‘ 1
N ; — SRR
§ ' t
- ! i 1 I
3 _____,T_ i L
|
1000 10000 ‘ 1
LOG(NUMBER OF {TERATIONS)
AVERAGE NETWORK TESTING PERFORMANCE FOR GRADIENT METHOD
-
X
Figure 5.21 Notice the 1ncrease 1n error at roughly 10,000
iterations.




1000

LOG(NUMBER OF ITERATIONS)
AVERAGE NETWORK TESTING PERFORMANCE FOR MOMENTUM METHOD

Figure 5.22 Notice the 1ncrease 1n error at roughly 1,350
iterations.

5 - L - _ e
1 i
41— N - -
P
= B
é% 3 ‘—Tl- T i N S — Lo _
g
2l - - .
1000 10000

LOG(NUMBER OF ITERATIONS)
AVERAGE NETWORK TESTING PERFORMANCE FOR SECOND ORDER METHOD

Figure 5.23 Notice the 1increase 1n error at roughly 1,200
iterations.

5-26




T

-y

-

In each error plot, the error is decreased, to some minimum
and then abruptly begins to increase. This phenomenon agrees
with observations made in Figs. 5.45 and 5.16.

Considering Figs. 5.8 and 5.19, it appears the network is
learning and converging on the optimal welight values which
minimize the error surface. However, as the feature vectors are
presented to the network, over and over, a point 1s reached when
the network attempts to find an exact solution to the optimum
weight values. If the region of the minimum 1s a relatively flat
region, there may be many solutions. Therefore, the net beglns
to memorize and the network loses i1its ability to generalize and
abstract the essence of the target. This may explain why the
average networK performance begins to degrade on the test data.
The network expects data which closely resembles the training
data. When it does not see this resemblance, then 1t makes an

1naccurate decision.

5.4, Summary

Classification of the target and non-target features using
the neural net classifier exceeded the performance of the
Bayesian classifier for +the +training data. But, the Bayeslan
classifier performed better on the testing data. However, by
applying a more lenient classification accuracy on the neural
net classifier it 1is Dbelieved that the network performance will
be 1mproved. Appendix F provides the results when applying a

more lenient criterion to the neural net,

5-27




row

Classification of the moment invariant features proved gquite
successful. The momentum and second order methods clearly
exceeded the performance of the gradient method of steepest
descent. Classification accuracies near perfection for the
training data were measured, while accuracies of 85/ were
achieved for the test data. Unfortunately, there was not a big
difference between the performance of the momentum method and
second order method, other than the second order method providing
a slight improvement in convergence time.

Chapter 6 entertains a general discussion on the results of
all three minaimization techniques used 1n chapters 4 and 5.
Aside from these discussions, recommendations and conclusions are

provided to conclude the thesis effort.

5-28




8. Discusszions, Recommendations and Conclusions

The following sections provide the closing remarks
concerning the results of this thesis effort. The chapter begins
with a discussion on the general results and findings provided
in chapters 4 and 5. Furthermore, the areas of further study 1in
pattern classification using neural networks, specific to this
research, are considered 1in section 6.2. The conclusion
discusses the contributions of ¢this effort in the field of

tactical target recognition using neural networkK classifiers.

6.4. Discussions

The findings obtained in chapters 4 and 5 provide some very
interesting results. For example, with three different sets of
input feature vectors, it was shown that there were distinct
disadvantages of applying the gradient method of steepest
descent as a minimization technique. In every case studied the
momentum and second order approximation methods exceeded the
rPerformances of the gradient of steepest descent technique.
There are several reasons for this and a few are discussed below
in the paragraphs to follow.

When applying the steepest descent method, recall that the
weights are Dbeing updated 1n small constant proportional
increments of the partial derivative of the performance surface.
If the minimum of the error surface lies 1n a relatively flat

hyperplane, the reduction 1n error will be very slow. In

6-1




addition, the existence of local minima could also pose a
significant threat to convergence. Another reason may lie in the
fact that the gradient (the vector of partial derivatives) may
not point in the direction of the global minimum. In weight
hyperspace, the partial derivative of the error surface (the
slope) in one weight direction may be far greater than the
partial in yet another weight direction. Hence, the gradient
would not necessarily point to the global minimum and the weight
update may be of little consequence in convergence. Thus, these
results confirm and reinforce the 1deas and concepts of many
researchers throughout the literature.

However, there is disagreement by many i1n the field of
neural networks, as to the best way to accelerate convergence. A
seemingly controversial means of acceleration 1is the momentum
term. Again, 1in all applications 1in this study, the momentum
method clearly exceeded the performances of the steepest descent
method. One reason for this, 1s the additional amount of
information the momentum method provides to the network
concerning the error surface. With this method, the networkK 1s
allowed to look back in time by one time step. This allows the
network to add the so-called momentum term. This momentum term
is simply a welghted version of the weight update from the
pPrevious time step, allowing convergence to continue 1n the same
direction as the previous step. If the current update has the
same sign 3as the previous update then the convergence towards the

minimum 1is accelerated,. If the signs are opposite then the

el Al ’

o V.

—ia

A A,




update is small; it is hoped that this will prevent the network
from over shooting the minimum. However, this may not be the
case and the algorithm may also still Dbe susceptible to local
minima. Never the less, in general, the momentum term has the
effect of adding a quadratic term to the minimum of the error
surface. This term performs an average of the current and
previous updates and the result is a smoothing of the error
surface. This study shows the momentum method to be quite
effective, when compared to the steepest descent method.

The second order approximation to Newton’s method proved
Just as successful as the momentum method and in some 1instances
slightly accelerated convergence. The Dbasic concept behind
accelerating convergence 1is to provide the network with as much
information as possible about the ever changing error surface.
In doing so, the decisions made by the network are made faster,
more decisive and accurate. In using second derivative
information, it 1s desired to gain new 1nformation. For
instance, using first order techniques as those described above,
all the 1information about the past training 1is stored the
positional values of the weights. Second order methods store
information about the local shape of the error surface, és well
as maintaining the positional information. In addition, the
algorithm used in this study, applies time derivative
information. wWith each new input nresented to the network, the
performance surface changes. Therefore, when considering each

time step, the performance surface 1s changing with time. The

6-3

R

Rl




time derivatives of signals propagating through the network,
provide the network information regarding how the performance
surface changes with time. Any acceleration in convergence over
the other two methods (within this study) has to be attributed to
this added 1information this algorithm 1is providing the network.
The reason there was not much difference between the
momentum and second order methods 1is not well understood.
Pernhaps the very fact that the ailgorithm used in this study, is
merely an approximation to the more powerful Newton’s method
provides the answer. After all, the actual 1implementation of
this approximation provided an additional term to the already
existing momentum method within the algorithm (see Eq. 2.8)
This additional term contained all of the second derivative
information, as well as providing the time derivative
infermation. The following section provides recommendations for
areas of further study, to include techniques which may provide
more information than the momentum method, and thus accelerate

convergence.

6.2. Recommendations

The second order algorithm approximating Newton’s method
provided some promise for pattern classification. However, from
the results of chapters 4 and 5, the second order algorithm
provided very little improvement over the momentum method, other
than a slight 1increase 1n convergence, Therefore, further

studies are required for improving the performance of neural net

6-4




classifiers.

1.

In chapter 2, it was shown that ParKer ({8) derived an
approximation to the powerful iterative technique Known as
Newton’s method. More specifically, the algorithm

approximates the following second order HNewton’s method:

aw als -1 as
— . [(_vg — ] e—.
at awowT aw

Many problems arise when attempting to solve this linear
differential equation. First of all the number of operations
becomes a cubic function of the number of weights (n) in the
network. These are the number of operations required to
invert the matrix. However, as shown in appendix D, the
above matrix has a singularity and therefore 1s not
invertible. For these reasons and more, explains why an
lterative approach was used to approximate the above linear
differential equation. The approximation basically concerned
the splitting of the matrix as show in appendix A. There are
many ways to approximate the above equation by 1iterative
techniques.

Aside from the approximation to Newton’s method applied
in this study, other approximations should be explored. One
such approximation may apply the Jacobian method for
splitting a matrix, in 1lieu of using the 1identity matrix.
Another method may employ a Gauss-Seidal method. Still,

another method, which may prove to be even more powerful, 1is

6-5

. N




the successive overrelaxation method which is a generalized
version of the Gauss-Seidal method. These methods allow the
inversion of a portion of the matrix, such as the diagonal,
rather than no inversion at all. To invert the diagonal
matrix requires a simple computational process.

A considerable amount of information is Known about the
- second partial derivative matrix as eluded to in appendix D. .
For instance, the concavity of the matrix 1is solely dependent
upon the weighted input matrix. Hence, the more we Know
+ about the input, the more we Know about the concavity of the
performance surface. Second order techniques use the

concavity of the performance surface 1n computing a new

update to the parameter being optimized. An example of where
this discussion 1s heading 1is provided. Suppose that the
input components were orthogonal to one another. This
provides an orthogonal matrix. With this added information

on the 1input, it would Dbe a simple process to invert the

matrix, since

2. The algorithm also approximated the average second partial
derivative of the performance surface as 1t’s 1nstantaneous i

value. A Dbetter approach may be to calculate the average

second partial matrix or some portion of 1t. A means of
computing this average may takKe the following form: ﬁ
6-6




acs v als
avg| —— ) = ey ——|cexp( —we( Vv —K ) ),
owowT s awowT | k

where v the represents the maximum number of time steps
desired to average, while K represents the current time
step. The above equation provides a weighted memory of the
past, with the most recent input receiving the most weight.
Another alternative would Dbe to explore a Dbatch
technique. The 1idea is to process all of the input data and
then average the total output error and corresponding
partials. The respective update equation would then have
information pertaining to all inputs and again provide
somewhat of a memory of all input data from the environment.
3. A more thorough investigation of the Roggemann FLIR
features 1s required. The number features used for target
and non-target classification could be increased from the

three used 1in this study. Later findings Dby Roggemann show

that the Bayesian classifier improved dramatically by
increasing the number features ( to 9). The neural network 2
rerformance should improve given the additional information ﬂ

on the input.

.

6.3. Conclusions

The second order approximation to Newton’s method proved

quite successful in pattern classification applications. In some

instances, it slightly accelerated convergence. The network was

6-7




able to classify targets with a moderately high degree of
accuracy. The classification of features segmented from the FLIR
imagery, is truly exciting. Each method provided classification
accuracies of the test data at close to 85/ and near perfect
accuracy on the training data, when using the moment invariants
as features.

There were four basic contributions made during this thesis
effort. First of all, this research effort has provided, tested
and vailidated a new biologically based neural network classifier.
The networkK applies second derivative information concerning the
second partial derivatives of the performance surface (in thas
case error surface). In addition to providing second derivative
information this algorithm also provides information about how
the surface is changing with time. Even though the algorithm did
not provide a significant improvement 1in convergence time or
accuracy, it still performed on a comparable level with the
momentum method. This result alone adds validity to the concepts
behind the algorithm and continued study 1n this area |is
warranted. Furthermore, this algorithm allowed for an easy
comparison between three different minimization techniques. The
results of this thesis clearly demonstrates the advantages of
using the momentum and second order methods over the steepest
descent method.

Secondly, the success of the artificial neural network
classifier reinforces the fact that they can be very effective 1n

applications on automated target recognition. In comparison with

6-8

— |




Y v v —

-

the Bayesian classifier, results demonstrate that the neural
network classifier exceeded the performance of the statistical
classifier on the +training data. However, the Bayesian
classifier performed better on the test data. When the
classification criterion was less stringent (and comparable to
the Bayesian criterion), the neural net classifier using the
second order method further exceeded training performance levels.
The test data accuracy approached the performance levels of the
Bayesian classifier. This can be observed from the results 1in
Appendix E. These results reinforce earlier results found Dby
RucKk [12], demonstrating the superior performance of neural net
classifiers over statistical classifiers.

The +third contribution concerns networkK generalization.
Results show that there may be a definite dividing line between
the network actually learning and memorizing its environment over
continuous training. Once that dividing 1line 1s crossed the
network begins to memorize, thus destroying 1it’s ability to
generalize or learn from its environment. In this study, the
test data accuracy began to deteriorate. This was particularly
noticeable with the FLIR imagery features. when the classifier
processed the dopﬁler imagery features, this phenomenon was not
as noticeable, This should not be terribly disturbing, since the
data base consisting of doppler imagery features was so heavily
influenced Dby tank features. The network may not have seen the
other features enough to draw on such a conclusion.

The fourth and final contribution reveals that the

6-9




classifier has the same disadvantages as a human observer. For
instance, when the field of view was wide, the resolution of the
object of 1interest was poor. The actual target was
indistinguishable by a human observer. Using a narrower field of
view, provided better resolution and the target Dblobs were very
distinct. When using features generated from wide and narrow
fields of view the classification accuracy never grew higher
than 63Z on the training data. After removing the objects from
the wide field of view, classification increased dramatically.

In a supervised training environment, feeding the network a
poorly resolved object with a classification label, 1s the same

as lying to the network.




N

Appendix A: An Introduction to HNewton’s Method and Iterative
Methods

In chapter two, the approach to Parker’s second order
derivation [8) was introduced. In +this appendix, the steps
which were left out are provided here in detail. The first
section will cover the missing steps in the derivation of the
second order Newton’s method. This will immediately be followed
by an introductory discussion on Newton’s method in general.
Parker chose to approximate Newton’s method, by solving the
linear differential equation by applying an 1iterative approach.
Therefore, an iliterative approach will be discussed 1n general, 1in
the third section. The final topic for discussion concerns
convergence and the addition of Parker’s leakKage terms to the
approximation derived from the iterative approach. The
following text 1is the result of conversations and notes takKen

from 1nterviews with Dr. MarkK Oxley [6].

A.l. Derivation of HNewton’s Method

The derivation bbegins with a restatement of Eq. 2.4, where
the functional dependencies of s on t, f;,(7), and w(t) have been
suppressed for convenlence. The average instantaneous

performance 1is given Dby:

Assume that t 1s fixed and the above equation wi1ill provide a

A-1

*

—il,




snapshot of the performance surface. The equation for the
optimum weights is being derived from an optimum criterion. This
implies, the derivative of the average performance surface with
respect to the weights, evaluated at the optimum weights (w"*) 1s

zZero. Temporarily, let

e V(t=T) go, A.1

q 2 ——— 0 b

ow*

oavg({s) t ds
po
~o dw®

Now, let t wvary and gq becomes a constant function of time.
Again, from an optimum perspective, as s changes the welghts
continue to follow the moving minimum. The next step 1s to apply

Leibniz’s rule and compute the time derivative of Eq. A., where

aq as t 9 ds
—_ 2 0 : yo + P P .e—u(t—r) dr

at aw* —m 3t | ow*

t as
-_— ua. .e—U(t“'r) dr.
—0 Ow*

Notice that the second 1ntegral term 1s equal to -pgq, and
therefore equal to zero. In the first integral, the only way s
depends on t 1s through w(t) and not on the input which depends

on T. Therefore, the following relationship holds:

O(OS} ( 32s }aw*
at |\ ow* aw*ow*T at

such that dq/dt becomes:




as t 32s } aw*
0O = Ye + ( uo[ —-———-—.e—u(t'—?) dr .

aw* —o aw*3w*T ] at

and

as a2s aw*
O = p- + avg . .

aw* aw*aw*T | 3¢

The exponentially weighted time average of the second derivative
1s a matrix (see appendix B). If the above matrix 1s invertible
(see appendix D) an explicit first order differential equation

for the optimum path of the weights 1s:

aw* as ] —1 ds
: —[ avg| —— ].u. A 2
at aw*ow*T | aw*

Thus Eq. 2.5 has been derived. Equation A.2 1s a second order

Newton’s method.

A.2. Newton’s Method in General

Newton’s method 1is an iteration method for solving equations
of the form f£(x) = 0, where f(x) has a continuous derivative.
The method 1is commonly used because of 1its simplicity and great
speed to convergence. The general 1idea 1s to approximate the

graph of f(x) by suilitable tangents, see Fig. A.il.




L]
X
{
Figure A.l. An 1illustrative graph of HNewton’s method (3]
. Using an approximate value Xxp obtained from the graph of £(x),
let x4y be the point of intersection of the x-axis and the tangent
to the curve at f(Xxg). Then
e
df (x) f{xg)
tan B - =
dax Xg — X4
where
f(xp)
Ry = Xg — — .
df (xg)
dx

In the second step, ¥p 1s found from x4y and in the following step
X3 1s found from Xxp. This 1s performed until £(xg) = O. In

f general, Newton’s method becomes:




f(XK)
Xkt = Xgp, — ———
af (xg)

dx

Equation A.2 is a straight forward continuum extension of the
above Newton’s method. It’s desired to have the partial of s

with respect to w* approach O.

A.3, An Iterative Method for AX = Db

If the matrix of Egqg. A.2 1s not 1nvertible (and 1t 1s not)
or calculating the second order Newton’s method 1s tedious, there
18 another approach.

Consider the following expression given Dby
A(t, X(t))ex(t) = Db,

which 1s in the same form as Eq A2, with the matrix on the right
hand side of the equatior_l. Let AX = b, to reduce the notational
overhead. One approach .to approximating the vector x 1s to
perform an iterative method. First, multiply the matrix A and
the vector b by BAt. The B controls the rate of convergence
and At 1s a small time 1ncrement which wi1ll later go to zero.
Then add and subtract the 1dentity matrix from the resulting A
matrix. This 1s a means of splitting the A matrix and 1s

accomplished in the following manner:

( BrAt-A + I - I ).x - B-«Al:D,




and
X = X — BAt+A.x + B.AtD.

i
The next step allows the iterative approach to take full form.

The idea 1is to use the partial time derivative of x(t) to compute
an improved estimate of the partial time derivative of
x(t+At). It 1s desired +to use some Known vector to predict
an 1improved version of that same vector. It 1s hoped, by
performing this process 1in an 1l1lterative manner, the time
derivative of x(t+At) will eventually be obtained. Returnineg
the functional dependencles for clarity, the 1terative approach

assumes the following form:

X(t+At) = x(t) — B+At+A(t, x{t))X(t) + B.AL:D,

where

X{t+At) — XxX(1)

: — BeA(t, x(t))+x(t) + B+b
At
In the limit as At approaches zero, defines the partial time

derivative of XxX(t), that 1s

.

ax(t)
—— : — BeA(l, X(L))+X(t) ¢+ B+b,
at
Let
aw? a%s \ ds
x(t) = ’ A(tu X(t)) B avg( —_— N b S =Y
at ow*tow*T | ow*
A-6




and then

3wt (1)
— Beye—, A. 3
it aw?

als ] awt(t) as

z - B.avg(

ate aw*aw*T

The (+) notation is used to imply an approximate value. Hence,

Eq. 2.7 1is derived.

A.4, Addition of Leakage Terms and cConvergence

From Egq. A.3, Parker adds leakKage terms to 1nsure the
network will converge to some mlnimum, since the 1terative

approach 1s no more than an approximation [7:593-600; 8].

Consider the following argument. Suppose that the 1terative
approach succeeds 1in driving XxX(t+At) - x(t) to O. Thus,
Axt - b

implying that approximate x* lies 1n a family of solutions
consisting of linear combinations, if A 1s not 1nvertible. In
other words, there are a number of solutions for x* which
satisfy the above equation. Many of these solutions may lie 1n
local minima. Thus, convergence to the optimum x* may never be
achieved. Therefore, a method must be sought to insure
convergence.

Parker argues that a natural way to 1nsure convergence 1S
the addition of leakage terms [8]. It’s assumed that the
integrators required to implement the algorithm are 1i1ndeed leaky.

An analogy drawn by Parker concerns that of an analog circuit.

A-T




Consider electrons leakKing off of a capacitor which stores energy
in the form of charge. Since all practical 1ntegrators have a
leakage rate, it seems logical to takKe them 1nto consideration
(81

Consider Eq. A.3. The first step 1s to calculate, the
second partial time derivative of w*, and then integrate to
obtain the first partial time derivative of w*, denoted as q'

By integrating q% w* is obtained:

t ( 3%s ds w
qt - { | - B-avg( _— )-q’ — By dr,

awtaw*T aw?

Next, taKe the time derivative of each of the equations above:

aq*t 3s 3s

: — Bravg| —m———— |+:qt — Brpye—,
3t owtow*T aw?
ow?

H q'_
at

Since two 1ntegrations are performed, then two leakage terms are
required. Therefore, subtracting the respective leakage terms
from each of the above equations has the following result:

aq

aas Js
— : — Bravg| —— |+q — Bpr— — 1 _.q, A 4
at dwawT ow

A-8




— g - lyw A.S

The (+) notation has been removed, sin-e2 it is now believed that
a Dbetter approximation of the guantities of the left hand side of
each equation has been found. It is now desired to remove the
dependency on q, by taKing the time derivative of Egq. A.5:

32w  aq aw

——:——11'— A. 6

ate at at
and substituting Eq. A.2 1nto Eq. A. 4:

3w acs as aw
— = — Bsavg| —
ate awawT
and finally, rewriting Eq. A.5, such that
w
q : — + 14w

at

and substitute qQ 1nto Eq. A.5, which yields the final result:

32w as { d8%s \

p
i —Bipe— — [ 1 «1 +I + B+l .avgt——J J-w
at aw a 1 owawT

b
acs aw
- {1 + 1 )Y.I + Beavg ———) o — A. 8
1 e dwawT at

To simplify the above equation somewhat, let

[
d.




ap = lyelp,

ag = Bely,

ay = lq + lp, and
ag = B.

Reparameterizing Eg. A.6, results in the following:

3w as acs
—_— 2 -3 — - ( a I + a -avg[ —_— } ).w
at 3w 2 3 dwawT
als ow
- [ a I + a oavg( —_—_— ) )-——. A. G
4 5 awawT at

The result of adding the leakage terms, 1s that 1t provides
the same effect as adding a momentum term (see appendix D) and
additive noise. The momentum term has the effect of smoothing
the error surface. The basic concept behind momentum, 1s to
suppress local minima, and enhance the global minimum. The
partial time derivative of w associated with ay 1s used 1n
introducing the momentum term (see section 3.4.2). The terms
associated with ap and az, combine to 1ntroduce noise 1nto the

network.




L

Appendix B: Linear Algebraic Forms and Notation

In chapters two and three, the equations introduced were
heavily dependent on linear algebraic forms. This appendix
serves as an attempt to clear up the notational overhead. This
section also provides examples of elementary linear algebra 1in
the form of matrix addition and multiplication. In the
discussions below, each vector 1s considered a column vector
unless otherwise specified as the vector transpose.

The problem posed, is to expand the first and second order
partial derivatives of the performance gquantity (s) and expose
the 1mpending linear algebra. In chapter +three, the network
performance quantity (s) was introduced as the sguared error.
Consider the first partial derivative of the network performance
indicator (s). The partial derivative of s, as 1ntroduced 1in
chapter three, has the following form when written 1n terms of

matrices,

3s geT
: 2 e
aw ow




- - - -
de de de
-1 2 . —In e
ow aw aw 1
1 i 1
de de de
—1 2 e — e
: 2] aw  aw aw . 2
2 e 2
oe de de
-4 2 ., _nm e
ow 3w aw m
L n n n_J L J
where
— - r -
as de
— E _._l..e
aw 1 aw 1
1 1
as de
— z __L.e
ow 1 aw !
2 = 2. 2 B. t
ds de
—— 8 __L.e
aw ] aw 1
L n L n J

The partial derivative of s with respect to w 1s a column vector.
When the performance 1indicator 1is defined as error, the first
partial 1is expressed as the sum of the partials of each error

signal with respect to a given weight. The partial with respect

to each weight 1n the network, 1s the direction of the gradient
and points toward the maximum of the performance surface. 4
Therefore, the discussion begins with the second partial of s 7

as defined in chapter three,




~

32s

awawT

|

is a

The above second partial

components. Below each component matrix is defined and expanded.

First, consider the partial

weight vector, where

aeT

ow

de
—1

o Q
3 .3

n

and similarly, the partial of

3eT ae

aceT

aw

de

ow

e with respect to w transpose

matrix

awawT

as

of e transpose with respect to the

de
aw
de

ow

de
—In

ow
n J




g

de de de -}
ow aw ow
i 2 n
de de de
de aw aw aw
_— p 2 n B. 4
dwT : : :
de de de
ow aw aw
L i 2 n

The product of the matrices, Egs. B.3 and B.4, determines
the first component of the sum in Eq. B.2.
1
[ de Jde de Jde de Jde
8 _.lo L 8 ‘L' l E —-—-tLt——L
1 dw oJw 1 dw dw 1 dw dw
1 1 1 2 1 n
de dJde de Je de Jde
b Lo 1 T 10 I _L._l.
deT ge 1 aw  aw 1 dw  aw 1 aw  aw
—  — - 2 1 2 2 2 n B. S
aw  awT :
de Jde de Je de Jde
r —L.—1 ¢ 1,1 g —4._1
1 dw odw 1 dw Iw 1 dw dw
L n i n 2 n n J

The next component considered 1is the second partial of e

This matrix 1s a

transpose with respect to w and w transpose.
little more complicated and care must be takKen to 1nsure 1indices

This last component of the

are maintained when multiplying by e.

second partial of (s) 1s defined as

A




_ -
a2e a%e a2e
- e .—_——L— e o———-—L E e o———L
1 ! awaow 1 ! aw aw 1 ! oow ow
1 1t 2 1 n
ace ace ale
e o e o e o
1 ! awaw 1 ! 3w ow 1 ! ow aw
: n B. 6
ae a2e ace
‘ L e ._.—J— L e o—-——l—- L e .__—_1_
1 ! aw aw 1 ! aw aw 1 1 aw ow
| n n n n J




-

Appendix C: Partial Derivatives of the Sigmoid Function

This appendix contains all the significant partial
derivatives of the sigmoid function used in this study of
artificial neural networks. Recal], that the output of a single
cell was chosen to be the sigmoid function, as 1introduced 1in
chapter two. In the various implementation stages 1t was
necessary to compute the first and second partial derivatives
with respect vam':ous independent variables. The independent
variables considered were the 1inputs to the cell (£f;4), the
interconnection weights (w), and the time (t) variables.

For clarity and simplicity, a single cell 1s considered with

several inputs and of course a single output, as shown 1i1n Fig.

C.1.

Cin v | €in2 | Souts | Cin,rs
' ! 1 !
‘in.l : €n.2 : foul :cm.r
1 [} L
! [} ]
1 1 }
4 Y
wl' W2. ceny wp
[} [} |
1 [} |
| i 1
] | 1
Y Y \j
,ﬂ;’l,ll €out, 1, f-;n.2- ‘:mt.z- f-;n.c- Cout.g»
']
,t'n.l €out,1 fin,l €out,2 ing Coutg

Figure C.1 A Single Cell
The first order partials will be considered first, followed

by the second order partials. The computations begin with the

C-1




-partial of the output (fy4u¢) with respect to w.

af 9 1

—out . ___

ow awl 1 + exp(—£T .w)
i

J
: —( ( t + exp(—£T .w) )1 )
ow i
o)
: ~1e( 1 + exp(—£T +w) )72.—| exp(—£T .w)
in ow n
T
1 exXp(—fin'w) 3
2 e . . (fT 'W)
t + exp(—£T w) 1 + exp(—£T .w) ow D
in in
Using the following relationship, where
exXp(—x) 1
1 -
1 + exp(—a) 1 ¢+ exp(—a)
= 1 — foyut

and

a = fln'wv

TaKing the above substitution, the partial of f,¢ Wwith respect

to w Dbecomes:

af

—out . ¢ N R E . c. 1
ow out out 1n

For example, the partial of fg,¢+ Wwith respect to wy 1s

al

JAL




of

__ﬂul = f '( 1 — £ ]’f. ,
6W1 out out in, {

Similarly, the partial of f,,y with respect to ¥;, has the

same form and is expressed as:

—ﬂlaf : f .( 1 - £ ]ow c.e
af in out out

As for the time derivative of the sigmoid function, 1t 1s
assumed that both the 1nputs and weights are functions of time.
Therefore, the derivative of the sigmolid with respect to time
will again be a partial over all the weights and 1nputs of the

cell, such that

&)
: —( { 1 + exp(-—iT 'w) )t ]
at 1
o)
: =1+ 1 + exp(—£T .w) )78 —( exp(—£T .w)
in 3t in
T
1 exp(—f ,n'wW) g T
FR— . ‘—(-fln'W)
1 + exp(—£T .w) 1t + exp(—£T .w) at
in in
9
2 f . _— )O— fT W
out out 3t in
C-3

.




g

From here the chain rule is applied to obtain the following:

T

af ow 8f
.——in H f o( 1 — f )0 fT ¢ — _m.w

at out out in a¢ at

The above may be rewritten by applying Egs. C4 and C.2, where

9fout dfoyt 9w  dfgyt 9fin

H ¢ —— b —

at owT at  afT at
1n

The second order partials are a straight forward extension
of the first order partials. In fact, Eqgqs. C.4 and C¢C.2 will be
used in the computation of the second order partials. To begin,

the partial of f,,;t Wwlith respect to0 W and Ww transpose 1s

considered.

a%f 3 af
—out . __ | —_out J
awawT awl owT

af af
s | —out,( 4 ~ ¢ ) — £ .—QuL |, ¢T
3w out out 3w in
\
: | f (1 — f 1208 — (f 12 1~ £ ) o f | . £T
out out in out out in } in
: f (1 — £ Yol ¢ 1 — £ - f £ T
out out out out 1n 1n
C-4

e




92f 5y T T
— = four*( 1 — fout Il 1 — 2:foyt )etin+tyn C.4
awawT

Similarly, the second partial of f,,4 Wwith respect to f,, and
fin transpose is found to be:
3%f 4yt

T : foutc( 1 — fout Vel 1 — 2efgyy )owewl C.5

in in
Another second partial used 1in the fermulation of the second
order algorithm, 1is the second partial of {f,;¢ WwWith respect to w
and £, transpose. Again the use of Egs. Ci1 and C.2, and the

application of the chain rule 1is desired, to obtain

af d ( af
——out . __ | __out
IwafT awl afT
in in
3
: — £ e( t — f )owT
3w out out
af af
- —out, ¢ — ¢ ) — £ —out |,yT
aw out out aw
3
v f (1 — f )-——( wT ]
out out aw\

where the result of the partial of wT with respect to w 1s an

(nxn) matrix and 1s denoted as I, and has the foliowing form:




B |

1 0 O 0
o t+ O 0
I - :
o . o O 1
L J

With this in mind the final form of the second partial becomes:

a2
——m:(f 1 — f 2o — (£ e 4 — £ )« f \.,,,T
dwafT out out 1in out out 1n‘}
in
t foutt( 1 — foyue 1
: f (1 — f Yol ( t — £ ) — £ £ owT
out out out out 1n
tfourt( 1 — four )01
3%f 4yt T
—— = fout*l 1 — foyt Ve 1 = 2efoyuy Ve fin'w
owatT
in

t fout*l 1 — fout 1°1I C. 6 *

In a similar fashion, the second partial of f,,4 With respect to

fin and wl is found to be ﬂ
32f 5yt T
—— = fout (1 — foyy 1t — 2ef5yt VW
af ,nowT
C-6




|

R

The final partials to consider

respect to time and w or £;,.

9 af 9 af
_{ __m) : _( _m]
at ow ow it

are the partials of £f,,¢4 with

a ( of aw  af af
s —| —out, _ , —outl, 1in |,
awl owT o3t  a#T at
in
by applying Eq. C. 3.
3 af L aw  a2f af
—_14{ —out - ——out, =, ___out, in
awl at awawT at awatT  at
1n
T aw
: foutel 1 — foyut 10 1 — 2efoyy Vefincfin—
it
af |
v foute( 1 — fout ) 1t — 2efgyy Jefip Wl
3t
afin
t fout*( 1 — fout )
ot

Similarly,




9 of a2s aw a2s af
__Q.Lll . ____9_”1‘__ + out . in
of at 3t owl at  af ofT at
1n in in  in

T oW

z foutel 1 — foug Vel 4 = 2efour Vewed e—

at

+ fOu‘f.'( 1 - fout_ Jeol 1 — a'fOUT. ).'.wT.

at

t foyutc (1 — fayt ) :
t

The above computations provide an excellent review, as well
as a quick reference to the partial derivatives of the sigmoid
function. From the results, 1t 1s readily seen why the sigmoid
function 1s a popular nonlinear transfer function used by the
artificial neural network ccamunity. All of the partials of the
sigmoid are functions of the sigmoid 1tself. This makes

computations very simple and convenient for a digital computer.

)
—

_a




Appendix D: Second Order Convergence Conditions for a Single Cell

The topic of this appendix concerns some ideas for improving
the networkK convergence to an optimum set of weights. More
specifically, the questions posed are: Can the network begin
its training routine with the second order algorithm? If so,
what criterion must be met to insure that the network waill
converge on an optimum set of weights? Is there a means of
improving the convergence times? The first section discusses the
initial state of the network. It introduces the craiterion which
must be met 1n order to begin {raining with the second order
algorithm. The next and final section entertains the 1dea of
accelerating convergence with a momentum term. The following
text 1s the result of conversations and notes taken from

interviews with Dr. MarK Oxley ([5).

D4. Initialize Training with the Second Order Algorithm

To Dbegin answering the above qguestions, a simple problem 1s
constructed for clarity. Consider a single layer perceptron that
classifies an analog 1i1nput vector into two classes denoted 1 and
2, see Fig. D

The single cell 1s to divide the space spanned by the 1nput
Into two regions separated by a line ( or hyperplane ) 1n two
dimensions. Class 1 w1ll be represented by a desired output of
1, while the desired output for class & 1s O. For training
purposes it 1s desired to minimize the sgquared error function
with the second order algorithm. To begin training with a second

D-1

'R

al

.




X
1
A Ao
Al
A 8
." xz
LB -
X w ,° -W
in(3W -X ) w
ot | 1 2 w1

.G1=>CLASS A
0=s CLASS B

Figure D.t Pictorial Problem Description

order algorithm, 1t 1s desired for +the 1nitial weight settings
to exist within the basin of attraction of a global minimum of
the squared error performance surface. In this context, the
global minimum 1s defined over the entire training ensemble of
input vectors. If this criterion 1s not met, the path tewards
the optimum set of weights may never be found by the second order
algorithm,

Let

[y

s(w) = ( d — f(xJ), w) 2 D. 1

M =

= |
(&
"
-

where s(w) 1s the average squared error over all K input vectors.
For the problem considered here, w = (wy, Wp, w3) and X = (Xqy,
Xp, 1) Keep in mind that the concept can be extended to a

network of higher dimensionality. By takKing the first partial

D-2

F N




derivative of s and evaluating at the optimum weilghts (wh, 1t 1is
desired that a minimum exists, and preferably equal to 0.
Assume that f(xJ, w) is the sigmoid function, so that the

results of appendix C may be used and

as(w) 2 kK 9 .
— _.2: (d— £f(xJ, w) yo—| d — £(xJ, w)
ow K 3:14 ow
2 Kk , _ .
s - =y (- £(xJ, w) Yef(xJ, w)+( 1t — £(xJ, w) ):xJ D.2
K 5.
Jj=1

since the global minimum 1is also desired. To insure a minimum

and not a saddle point, the second partial of s 1s considered.

3cs(w) 2 k 3

a
: = Y —[ ( d — £(xJ, w)o——?( d — £(xJ, w) ) )

awawT K 571 ow aw

2 Kk
_.E fF(x3, wie( 1 — £(xJ, w) )
K j=1

'(f(xJ. wi«( 1 — f(xJ, w) )
—(d~ f(xJ, w) ) t — 2+F(xJ, w) )

xJ o (xT. D. 3

The expression preceeding the matrix 1s a scalar for given
values of xJ and w; therefore, the entire expression 1S 1n the

D-3




form of a matrix. If the expression is determined to be positive
definite, then when the first partial of s 1s evaluated at the
optimum weights the result is the minimum of the error surface,
and 1ideally zero.

First, it must Dbe determined that xJ(x)T is a positive
definite matrix or not. Therefore, a necessary and sufficient
condition for the real symmetric matrix A to be positive definite

[14:243-2541:

(1) yT'A.y > 0 for all nonzero vectors y.
(2) All the eigenvalues of A satisfy A; > O.
(3) All the submatrices A, have postive determinants.

(4) All the pivots (without row exchanges) satisfy 4, > 0.

To satisfy criterion (1) consider the following:

yToaey = yToxdo(x)Toy
: ( yTexd )¢ (x) Ty )
: ( yTexd ()2 2 o.

The above result shows that the matrix xJ«x)T could be
pPositive definite or positve semli-definite (implying a 0
eigenvalue). Further investigation with c¢riterion (2) 1s
necessary. If the matrix 1is singular, then a 0 eigenvalue
exists. To determine the singularity of a matrix consider the
determinant of A.

Recall that xJ represents an arbitrary input pattern, where

D-4

o im




each pattern will be considered a column vector. Each component
of a single pattern or vector 1is denoted as Xx;. Considering a
specific 1input vector to ease the notational overhead, and

expanding the matrix yilelds:

X X 1
L 1 2 ]

and hence the

- o
|A] = jx-x|

s (%9020 (%202 = (%2028 ) — KyeXpe( Xp+Xy — Xpexy )

¢ Kgel Xge(Xp)8 — Xy (%212 )
= 0.

Since the matrix 1is singular, 1t 1is positive semi-definite. At
this point, the test for a global minimum 1is inconclusive, since
it is entirely possible that the second partial evaluated at the
optimum weights may Dbe a saddle point. Therefore, 1t 1is
necessary to force the matrix to be positive definite and 1insure
a global minimum by adding a scaled quadratic function of the

weights to s(w), such that

S(w) = s(w) + €+ w~—w* Tof w—~w* ), € O D. 4




-y

This particular quadratic was chosen, such that when the first
partial derivative is taken and evaluated at w¥ the partial of
the quadratic reduces to zero under ideal conditions. The second

partial of S(w) evaluated at the set of optimum weights (w% is

32s(w*) 32s (w*)
: + 2+€.I » O
awawT awawT

and positive definite if

£(xJ, wy.( 1 — £(xJ, w) )
— (d— f(xJ, w) )«( 1 — 2:£(xJ, w) ) 2 O, for each ).
Two cases must be considered, 4 = 1 and 4 = O. For 4 = 0, a new

function of the output may be described, such that

Gol(f) = £+( 2 — 3+f )

for a particular input and a given set of weights., The graph of

Go(f) is shown Dbelow in Fig. D.2. Keep 1n mind that the values
of the sigmoid function are continuous over the range (0, 1)
This implies that Go(f) is non-negative over 0O ¢ £ ¢ 2/3,
9
D-6




1
G «(f£)
0
e -ﬂi-’.---‘ _-—-“-- -\-
__.-*"-- T .
0 = B
0 f 1
Figure D.2 Quadratic Function for 4 = 0
When d := 1, the function taKes on the following form:
Gy(f) = —3.£2 4+ 4.f — 1

The gquadratic egqguation provides the points where the function

crosses the zero axis, such that Gy(f) is non-negative over the

range 1/3 ¢ £ ¢ {, The graph of Gy(f) 1s shown below 1n Fig.
D.3.
1 —_
G (f)
1
0 . -
0 £ 1
Figure D.3 Quadratic Function for d = 1
D-7

A




By over lapping the two graphs of Figs. D.2e and D.3, the
range of values f can assume 1is /3 ¢ £ ¢ 2/3. If the output
meets this initial criterion, then the second partial of the
squared error 1s a positive definite matrix. The c¢riterion
pPlaced on the 1initial weight values, such that the training
begins in the neighborhood of the global minimum c¢an be found by
rewriting this 1inequality. This 1is accomplished below.

Consider the range of values the output of the sigmoid
function may taKe on, in order +to begin training within the

neighborhood of a global minimum;, such that

— ¢ £(xT.w) ¢ =
3 3
1 1 2
3 1 + exp({—xT.w) 3
3
1 ¢ ¢ 2

1 + exp(—xT-w)

2 + acexp(—xT-W).

w
-~

1 + exp(—xT.w)

Consider the lower bound, where

exp(—xT.w) ¢ 2.

The lower bound for the weighted sum of the i1nputs becomes:

xT.w 2 —In(2)

.




The upper bound is found in a similar fashion,

exp(—xT.w) 2 1
xT.w ¢ In(2).
The final criterion becomes,
~in(2) ¢ xT.w ¢ In(2).

This relationship must hold over the entire 1nput vector
ensemble, If this c¢riterion 1is met, then 1t 1s 1nsured that
training will Dbegin with a set of weight values 1n the
neighborhood of a global minimum over the entire input ensemble.

Therefore, when considering the entire input training set,

—tn(a) ¢« (x))T.w ¢ 1n(2). , D.5

Results of this relationship suggest that the optimal weight
values are bounded in weight space Dby hyperplanes. These
hyperplanes are described from the above criterion, if XxTL.w
1s allowed to equal the two extremes, -1ln(2) and 1In(2), for a
specific 1nput. The result 1s a hypercube 1n weight space. The
ensemble of hypercubes over all 1nput vectors approximates a
sphere 1n weight space enclosing the optimal weight values for
the corresponding set of 1nput vectors.

By placing some restrictions on the magnitude of the 1input

vectors and then analyzing the c¢riterion of Eq. D.5, the 1initial

D-9




range of weight values may be randomly chosen. For 1nstance,
assume that the 1inputs have been normalized to lie 1in the

interval (-1, 1) By restating Eq. D5 in the following manner:
n
—=ln(2) ¢ w +x ¢ In(2},
gii !

where n ranges over all inputs to the cell. With the above
inequality, consider a worst case condition; assume that all the
inputs are all equal to 1 (or -1). This condition places a
further restriction on the 1initial value of the welghts, than

imposed by the above 1nequality of Eg. D.5, such that

n
—In(2) ¢ w ¢ In(2)
1:1 !
and
n
—-ln(2) ¢ w ¢ In(2). D. 6

The above 1inequality provides a strict criterion for the initial
weilight values of each cell. For applications within this study,
the weights are randomly set. It would be a trivial exercise to
perform the above criterion and reset the weights of those cells
which do not meet the 1nequality.

Two 1important results should be observed from the discussion
above. First, 1f the criterion of Eq. D6 1s met, then a the
inequality of D.5 1s met. This 1mplies that the second partial
derivative of the squared error 1s a positive definite matrix.

D-10




Y

T

The existence of the positive definite matrix implies the
existence of a global minimum over the corresponding 1nput set.
Furthermore, training begins within some neighborhocd of the
global minimum. Secondly, randomly setting the weights to very
small, negative and positive, values provides a near zero value
for the sum of weighted inputs. This implies that all output
nodes fire on average, near 0.5, allowing the network +to train
and drive the outputs toward desired values. If the nodal
outputs are driven towards extremely low or high values
initially, the networkK has a very difficult task of driving the

network towards desired values 1n the opposite direction.

D.2. The Momentum Term

The weighted quadratic function added to the squared error
term, is an attempt at driving the second partial matrix of the
squared error to a positive definite matrix,. However, many
researchers desire to use this gquadratic, with the 1dea of
enhancing convergence times. For 1instance, consider Eq. D.4 as
the function +to minimize during training. Reproducing Egq. D.4

pI‘OVldeS,
K
S(w) = —«31 ( d — f£(xJ, w) 12 s € w—w* (To( w— wl ),

Using a first order technique, the weights are changing according

to the following first order differential equation:




S AEERAsusthten _aner

——

ow e]
— : —| —Bes + € w—wr () Top w— wt |,
it ow
Lippman describes the discrete counterpart of the above

differential equation [4:17). By computing the partial, the

weights are updated Dby:

K
— s — Y (d — f(xJ, w) )ef(xJI, w)-( t — £(xJI, w) ).x)
b

Q
(ad
S
[ "

"

t 2+€0( W — w* )

The parameter B controls the convergence rate. The last term,
2:€+(w - WwW%), 1s Known as the momentum term and first
introduced by Rummelhart, Hinton, and williams [13]. An
ariticle by Lippman describes the momentum term as possibly
improving convergence times [4:17]. In the derivation of the
second order approximation, ParKer introduces the momentum term
by means of leakage terms ([7:593-600; 8). ParKer Dbellieves the
leakage terms 1insure convergence.

In the last section, conditions were established such that
the network could begin training with a second order algorithm.
However, what happens to the positive definite matrix of the
second partial of S as the networkK trains? To maintain the
status of a positive definite matrix, there must be some
condition placed on €. In this section, 1t 1s desired to find
the optimal momentum scalar, €, 1insuriag that +the search 1s

always being performed near the global minimum.

D-12




Consider Egq. D.4, which defines a new performance surface,

where
S(W) = s(w) + €+({ w—wt )T.( w—~ w*)

and the average second partial of S becomes:

a2s(w) 2 Kk ,
—— : =} f(xJ, w).( 1 — £(xJ, w) )
owawT K §31
~(f(x3, wie{ 1 — £({xJ, w) )
—(d = f(xJ, W) 1o 1 — 2:.F(x), w) ) )
oth(xJ)T + 2'6’1.
Let
aixd, w) = £(x], w).( 1 — £(xJ, w) )'(f(xj, wie( 1 — £(xd, wi
—(d — f(xJ, w) )+ 1 —2F(xI, W) ) \.
J
then
3°S(w) 2 K } _
—— s =} a(xd, wy.xJ.(xI)T + 2.€e.1.
awawT K 571

Given an 1input pattern and set of weights o becomes a scalar.
Its dependence on xJ and w will be removed for convenience,

To remain within the global minimum, the matrix above must
maintain 1its positive definite condition. Again, the test for a

positive definite matrix 1s applied, such that

L._J A



-y

yTo( arxd(x3)T 4+ 2:€:1 ).y » 0O,

for all j = t, 2, ..., K and for all y which are members of
R,  So
( oryTexdo(x3)Tiy + 2:€:9Tey ) -
( o YT°XJ Yol (x3)Tiy ) + E:E:yToy ) =
(ool (x)Tey ()Tog (x)Tiy ) + 2:€:9Tey )

that 1s, we wish

a( (x3)Tvy 12 4+ 2.¢.yTiy » 0 D. 7

Two cases must be considered along the way to insure that the
above 1nequality 1s met. First, given an « > 0 and an xJ, 1s
there a condition on € such that the 1inequality 1s met? Yes, € >
0, where € 1s 1ndependent of o and xJ. The second case 1S not so

trivaial. For, given an a < O and an xJ, what condition 18§ placed

on €, where € := €(a, x)? Rewriting Eg. D.7,
—a-( (x3)Tvy )2
€ D. 8
2.yT.y

Recall that y 1s a nonzero vector. Figures D.4 and D5 are plots
of ax as a function of the output (f) for values of d - O and d =

1 respectively.

_al

Bl




For a value

value

-0.06.

that

and

a(f)

a(f)

of «

It

Figure D.4 a(f)

for d

is desired.

From Fuigs.

(x3)T.y

Figure D.5 «o(f)

independent of xJ
D.4 and D.5 that value

is also desired to have the maximum eigenvalue,

)2

yT.y

for q-t

most negative




A : Mmax
where the eigenvalues are found by

yo| x3(x)T — a1 oyT = 0

or

X X — A X +X X
1 1 1 2 1
X X X *X - A X : 0
2 1 2 2 2
X X 1 — A
1 2

for a particular 1nput vector . The above determinant produces
a c¢ubic in A, where
Ao =n ¢ ( x4 ¢ xp2 + 1) ) = O

and

Mmax : X128 ¢+ x2& + 1.

Finally, € 1s estimated as:

1 K J 3
€ ) — Y alxd, w)( (X 12 4 (x )8 1 ).
K 1
1
This expression 1s for the specific problem described above 1n 7
section D.i. In general, while considering the minimum <« (-
0.06), € can be rewritten as:
D-16




AL

€ > 0.06¢—: (x) + 1 D.9
K 321 : 1221 !

From the above inequality, € is a function of the sum of the

square of the input components averaged over the entire ensemble

of 1input vectors. The input equal to ! 1is analogous to a

threshold.

By adding the quadratic function of the weights to the
function (squared error) being minimized, a smoother error
surface results. It 1s Dbelieved the quadratic will (for lack of
a Dbetter expression) stretch out 1nflection and/or saddle points,
providing a smoother upward concavity. If the region 1n
Proximity of +the global minimum 1s relatively flat, the
quadratic will increase convergence times, again by Pproviding an
upward concavity. Thus the guadratlic removes areas within the
error surface which may slow down the converging PpProcess. The
expression for € 1n Eq. D.9, 1nsures that this c¢ondition 1s
maintained throughout training.

One gquestion remains to be answered. From the above
discussions, w* 1s the optimum vector of welights used to
determine the minimum of the error surfacé. So what value 1s
used to approximate w*? - It’s the best estimate of the previous

weight values, approximated by the weight update rule being used.




Appendix E: Further Comparisons with the Bayesian Classifier
This appendix provides an extended comparison of the neural
net classifier and Bayesian classifier. However, the c¢riterion
for determining correct classification has been altered for the
neural net classifier, In chapter five, the node corresponding
to a correct choice, had to fire above 0.8, while all other nodes
fire less 0.2. This criterion will be eased a bit to provide a
comparable analysis (if possible). Now, the node corresponding
to a correct classification must fire above 05 and all other
nodes below 0.5, Table E.1 provides the results for a single

Pass through the network.

Table E.4 Overall Classification Accuracy. (1) Gradient of
Steepest Descent, (2) Momentum Method, (3) Second Order Method,
(4) Bayesian.

Overall Accuracy

(1) (2) (3) (4)
Training Data * % 91. 9% 88. 7/ T4, 87
Testing Data * % 67. 87 72. 47 75. 37

The above table represents an 1nstance during a typical
training session. Again, the neural net classifiers far exceed
the performance levels of +the Bayesian classifier, when the
training data 1s c¢onsidered, However, the Bayesian classifier
has a sizable edge on the momentum method and a slight edge on
the second order method, when regarding the test data. It 1s
likely that the neural net classifier would 1i1mprove, 1f the

E-1

A_‘LL




~

amount of information 1is increased, For 1instance, by 1increasing

the number of original input features. The neural net learns by

example, the more information the net has,

the net has to learn it’s environment.

the more opportunity

B}



Appendix F: XOR Model

vith text_io;

with integer_text_io;
with float_text_io;
with float_math_lib;
with system;

with MATH_LIB_EXTENSION;
with VECTOR_OPERATIONS;
with somp_support;

procedure SO_XOR is

num_inputs
num_L1_nodes
num_L2_nodes
Al

A2

A3

A4

AS

total_error
Iteration_Count
Convergence_Count
Convergence_Criterion :
interval

Center
Width
total_cost
Seed

begin --Main

use text_io;

use integer_text_io;
use float_text_io;
use float_math_lib;

use MATH_LIB_EXTENSION;
use VECTOR_OPERATIONS;

use somp_support;

: integer;
: integer;
: integer;
: float;
: float;
: float;
: float;
: float;

: float;

: integer := 0

: integer := O;
0

constant :

: integer;
: float;
: float;
: float;

: system.unsigned_longword

:= MATH_LIB_EXTENSION.get_seed;

put ("Enter center of random weight distribution: "); get (center);

skip_line;

put ("Enter width of random weight distribution: "); get (width);

skip_line;

put ("Enter number of inputs: "); get (num_inputs); skip_line;

put ("Enter number of L1 nodes: "); get (num_L1_nodes); skip_line;
put ("Enter number of L2 nodes: "); get (num_L2_nodes); skip_line;
put ("Enter interval: "); get (interval); skip_line;




Dout : vector ( 1 ..

begin

num_L2_nodes );

--Initialize network parameters

for j in L1.W’range(2) loop

for i in Li.W’range(1) loop

put ("Enter the constant Al: "); get (Al1); skip_line;
put ("Enter the constant A2: "); get (A2); skip_line;
put ("Enter the constant A3: "); get (A3); skip_line;
put ("Enter the constant A4: "); get (A4);
put ("Enter the constant A5: "); get (A5);
declare

L1 : layer ( num_inputs, num_L1_nodes );
L2 : layer ( num_L1_nodes, num_L2_nodes );

skip_line;
skip_line;

uniform ( center, width, seed, L1.W(i, j) );

L1.Del_W(i, j) := 0.0;
end loop;

uniform ( center, width, seed, L1.Theta(j) );

Li.Del_Theta(j) := 0.0;
end loop;

for j in L2.W’range(2) loop

for i in L2.W’range(1) loop

uniform ( center, width, seed, L2.W(i, j) );

L2.Del_W(i, j) := 0.0;
end loop;
uniform ( center, width,
L2.Del_Theta(j) := 0.0;
end loop;

seed, L2.Theta(j) );

vhile Convergence_Count /= 4

if Iteration_Count mod 2
L1.Fin(1) := 0.1;

else
L1.Fin(1) := 0.9;

end if;

if Iteration_Count mod 4
L1.Fin(2) := 0.1;
else

loop

0 then

2 then




71

L1.Fin(2) := 0.9;
end if;

if Iteration_Count mod 4 = 0 or Iteration_Count mod 4 = 3 then

Dout(1) := 0.1;
else
Dout(1) := 0.9;
end if;
forvard_pass (L1, A3, A5 );

L2.Fin := L1.Fout;
L2.Fin_Prime := L1.Fout_Prime;

forvard_pass ( L2, A3, A5 );
L2.Etotal := 2.0 * ( Dout - L2.Fout );

for i in L2.Fout_Prime’range loop

L2.Etotal_Prime(i) := -2.0 * L2.Fout_Prime(i);

end loop;

total_error := sum_output_error ( L2.Etotal );

if abs ( total_error ) < Convergence_Criterion then

Convergence_Count :
else

Convergence_Count :
end if;

Convergence_Count +1;

0;

backward_pass ( L2, A3, A5 );

L1.Etotal := compute_sum ( L2.Eout );

L1.Etotal_Prime := compute_sum ( L2.Eout_Prime );

backward_pass ( L1, A3, A5 );
total_cost := 0.0;

update_weights ( L2, total_cost, Al, A2, A4 );
update_weights ( L1, total_cost, Al, A2, A4 );

update_thresholds ( L2, total_cost, Al, A2, A4
update_thresholds ( L1, total_cost, Al, A2, A4




Iteration_Count := Iteration_Count + 1;

if Iteration_Count mod interval = 0 then

nev_line;
for i in L2.Fout’range loop

put ("Error = "); put (L2.Etotal(i)/2.0); put (" " );
end loop;

put ("Iteration = "); put (Iteration_Count); new_line(2);
end if;

end loop;
put ("Iterations till Convergence = "); put (Iteration_Count);
end;

end SO_XOR;




st 22 RZ2REZX222222 2222 X222 222X RRRRRRRRRRERRRRRRRRRRERRRREER SR
h —

—_—
—

-=-* This program is a computer simulation of a biological-based

--* neural network, applying a modified backward error propaga-

t =-* tion (BEP) algorithm. This neural network model was

--* developed for applications in pattern classification. The

modified BEP uses a minimization technique based on an

--* approximation to a second order Newton’s method. This

-~* algorithm takes advantage of second order derivatives (of

~-* the surface to be minimized), as well as first order deriva-

L --* tives. Time derivatives of the signals propagating through
--* the network are also used in updating the network weights.

~-* Below is the main procedure, Second Order Multilayer

--* Perceptron (SOMPl.ADA) written in the ADA programming

~-* environment.

Appendix G: ADA Programming Model

——

-~y
1
|
*

--* Model implemented by: Capt Clark Piazza, USAF

* % % % % % * * % F % * ¥ X X * ¥ X X %

pose S EE22 2R ERREREERRESRE R RRRREERRRRRRESRRRRRRRRRRRRERERRED)

with system;

with text _io; use text_io;

with float text io; use float text io;

with integer_text io; use integer_text io;
with float_math_1ib; use float math 1ib;
with somp io; use somp_io;

with somp_support; use somp_support;

with vector operations; use vector operations;
with math_lib_extension; use math_lib_extension;

procedure sompl is

center : float;
width : float;
num_L1 nodes : integer;
num_L2 nodes : integer;
num_classes : integer;
num_tr_patterns : integer;
num_te patterns : integer;
num_moments : integer;
Al : float;
A2 : float;
A3 : float;
A4 : float;
A5 : float;

-- Testing and training files containing pattern feature vectors.
-- The file containing the features, must of type string 16
~- characters long.

. A



te_list : string (1 .. 16 );
_ tr list : string (1 .. 16 );
seed : system.unsigned_longword := math lib_extension.get_seed;
output_error : float;
error_tolerance : float;
L_ total cost : float;
total distance : float;
avg distance : float;
max]_index : integer;
) max2 index : integer;
max_iterations : integer;
f‘ interval : integer;
num_iterations : integer;
te_count : integer;
tr_count : integer;
tr_num_correct : float;
te_num_correct : float;
tr_accuracy : float;
te_accuracy : float;
tot_tr_error : float;
tot_te_error : float;
avg_err_per_pat : float;

num_passes integer := 1;
tot passes : integer;
num_points integer;

convergence : boolean;

tr_error_file
te_error_file
tr_accuracy file

te_accuracy file

text_io.file_type;
text_io.file_type;
text _io.file type;
text io.file_type;

-—- Begin main procedure.
{ begin
-- Enter the following from the terminal or create a com file.

L put ( "Enter center of random weight distribution (center),
type float: " ); get ( center ); skip_line;
put ( "Enter width of random weight distribution (width),
type float: " ); get ( width ); skip_line;
put ( "Enter number of layer one nodes (num L1 nodes),
type integer: " ); get ( num_Ll1 nodes ); skip_line;
put ( "Enter number of layer two nodes (num_L2 nodes),
L type integer: " ); get ( num_L2 nodes ); skip_ line;
put ( "Enter number of output nodes (num classes),

!
]
N




type integer: " ); get ( num_classes ); skip line;

put ( "Enter number of training patterns (num_tr_patterns),
type integer: " ); get ( num_tr patterns ); sk;p line;

put ( "Enter number of testing patterns (num_te patterns),
type integer: " ); get ( num_te_patterns ); skip_line;

put

( "Enter number of moments per pattern (num moments),

type integer: " ); get ( num_moments ); skip_line;
put ( "Enter training moment data file (tr list),
type string: " ); get ( tr_list ); skip_line;
put ( "Enter testing moment data file (te list),
type string: " ); get ( te list ); skip Tine;

put

( "Enter number of separate training passes (tot_passes),

type integer: " ); get ( tot_passes ); skip_line;

put

( "Enter maximum number of iterations (max iterations),

type integer: " ); get ( max iterations ); sk1p line;

put

( "Enter output interval to examine results,

type integer: " ); get ( interval ); skip_ line;

put

( "Enter error tolerance (error tolerance),

type float: " ); get ( error_tolerance ); skip_line;

put
put
put
put
put

cre
cre
cre
cre

dec

Ll
L2
L3
Dou
tra
tes

dat

avg
avg

avg_

Enter the desired learning parameters. Al controls convergence
for first order method. A2 and A3 control the amount of noise
induced into the network. A4 controls the amount of momentum.
A5 is a convergence term controlling the second derivative
information.

( "Enter constant Al, type float: " ); get ( Al ); skip line;
( "Enter constant A2, type float: " ); get ( A2 ); skip_line;
( "Enter constant A3, type float: " ); get ( A3 ); skip line;
( "Enter constant A4, type float: " ); get ( A4 ); skip_line;
( "Enter constant A5, type float: " ); get ( A5 ); skip line;

ate ( tr_error_ file, out_file, "tr_error.dat" );
ate ( te_error_file, ovt file, "te error.dat" );
ate ( tr accuracy file, out _file, Ttr _accuracy.dat" );
ate ( te_accuracy file, out _file, "te_ accuracy.dat" )

’
.
’

Declare network layer variables.

lare
: layer ( num_moments, num_Ll1 nodes );
: layer ( num L1 _nodes, num LZ nodes );
: layer ( num_L2 nodes, num_classes );
t : vector (1 .. num_ classes );

ining_array : matrix ( 1 .. num _tr patterns, 1 .. num moments + 1
ting_array : matrix ( 1 .. num te patterns, 1 .. num moments + 1
Interval must be some multiple of max_iterations.
a_points : integer := ( max_iterations / interval ) + 1;
_tr error : vector ( 1 .. data points );

te_error : vector ( 1 .. data_points );

tr_acc : vector ( 1 data_points );

G-3

)
);




avg_te_acc
B tr acc array
te_acc_array
tr_err_array
te_err_array

L1 weights
L1 thresholds
L2 weights
L2 thresholds
=~ L3 weights
L3_thresholds

tot_parameters

-- Begin declare

\

begin

num_points

convergence

| while

-- The parameters below
-- of the weights and thresholds, via cost.

get_moment array (
get moment_array (

num_iterations

vector
matrix
matrix
matrix
matrix

S~~~ o~

constant
constant
constant
constant
constant
constant

constant

block.

initialize_network ( L1,

-~ Begin training.

1
0
f

.
14
.
[4

a

.. data_points );
.. tot _passes, 1 .. data_points

tot _passes, 1 .. data_points
.. tot_passes, 1 .. data_points
.. tot _passes, 1 .. data™ _points

e e
L]
-

N Nt Nt g

we e we W

may be used to measure the amount of change

natural := num_moments * num L1 nodes;

natural := num_ L1 nodes;

natural := num_ L1 nodes * num_L2 nodes;
natural := num_ L2 nodes,

natural := num_ "L2 nodes * num _classes;

natural := num_ ~classes;

float :=
float( L1 weights + L1 thresholds +
L2_weights + L2 thresholds +
L3 weights + L3 thresholds );

.' -- Get training and testing moments, store into an array.

tr_list, num_moments, training array );
te_list, num moments, testing_array );

-- Initialize and train network a predetermined number of times
-~ and average network performance.

while num_passes <= tot passes loop

-~ Initialize network variables.

L2, L3, center, width, seed );

lse;

num_iterations <= max_iterations loop

~-- convergence = false and

generate random moms

training array, L1.Fin, Dout,

( num_tr_ patterns, num_moments,
seed );

-~ Begin forward pass through network.

[ N




compute forward pass ( L1, L2,

L3,

A3,

AS );

-~ Compute output error and time derivative of error for each

-- output node.

L3.Etotal := 2.0 * ( Dout - L3.Fout );

for i in L3.Fout Prime’range loop
L3.Etotal Prime(i) := -2.0 * L3.Fout_Prime(i);

end loop;

-~ Compute sum of output errors,

~- input patterns, and test with error tolerance for convergence.

-- output_error := sum_output_error ( L3.Etotal );

sum and average over all

-- if num_iterations mod num_ tr _patterns /= 0

- or num Tterations = 0 then

-- avg_err_per pat := avg_err per pat
- + (Toutput_error / float(num tr_ patterns )
-- elsif avg _err per pat < error toIerance then

-- convergence := true;
-- else

-~ convergence := false;
-- end if;

-- Begin backward pass through the network one layer

backward_pass ( L3, A3, A5 );

L2.Etotal := compute_sum
L2.Etotal Prime := compute_sum

backward pass ( L2, A3, A5 );

L1.Etotal := compute_sum
Ll1.Etotal Prime := compute_sum

backward_pass ( L1, A3, A5 );

total cost := 0.0;

update weights ( L3, total cost,
update weights ( L2, total cost,
update weights ( L1, total cost,

(
(

L3.Eout

):

L3.Eout_Prime

L2.Eout );
L2.Eout_Prime

Al,
Al,
al,

update thresiholds ( L3, total cost,
update thresholds ( L2, total cost,
update thresholds ( L1, total cost,

A2,
AZ'
A2,

Al,
Al,
Al,

A2, A4
A2, A4
A2, A4

-- Used to measure network paramete: changes.

-- avg_distance := sqrt( total cost

)yi

)

)

—

~e w4 we

at a time.

) / tot_parameters

o



if

Compute network performance.
num_iterations mod interval = 0 then
Check training data performance.
tot_tr_error

tr num correct
tr count 1= 1;

= 0.0;
= 0.0;
while tr count <= num_tr patterns loop

genecate_seq _moms ( tr_count, num moments, training_array,
L1.Fin, Dout 7J;

compute_forward _pass ( L1, L2, L3, A3, A5 );
find max_vals ( L3.Fout, maxl_index, max2_index );
tr num correct := tr num correct

+ float ( correct ({ maxl index, max2 index,

L3.Fout, Dout ) 7J;

L3.Etotal := 2.0 * ( Dout - L3.Fout );
ocutput_error := sum_output_error {( L3.Etotal );
tot_tr_error := tot_tr_error + output error;
tr_count := tr count + 1;

end loop;

tr_acc_array ( num_passes, num_points )
t= compute_ratio ( tr_num correcc, num tr_patterns );

tr_err_array ( num_passes, num_points )
t= compute_ratio ( tot_tr error, num _tr_patterns );

-- Check test data performance.

tot_te error = 0.0;
te num “correct := 0.0;
te count c= 1

while te_count <= num_te_ patterns loop

generate_seq moms ( te_count, numn_moments, testing array,
LT.Fin, Dout™ );

compute forward pass ( L1, L2, L3, A3, A5 );

find_max_vals ( L3.Fout, maxl index, max2 index );

8 A - A U a . & ]

.




te_num corre
+ float (

ct := te num correct
correct ( maxl_ index, max2 index,
L3.Fout, Dout ) 7;

L3.Etotal := 2.0 * ( Dout - L3.Fout );

output_error

tot_te_error

:= sum_output error ( L3.Etotal );

t= tot_te_error + output error;

te_count

end loop;

:= te_count + 1;

te_acc_array ( num_passes, num_points )

T= comput

e_ratio ( te_num correct,

te_err_array ( num_passes, num_points )

T= comput
num_points

end if;
num_iteration

end loop;
num_passes := n

end loop;

-- Compute averag
avg_tr_error
avg_te_error :
avg_tr_acc :

avg_te_acc
—-— Store average
store_net perf (
store net perf (

store _net _perf (
store net perf (

e_ ratio ( tot_te error,

= num_points + 1;

s := num_iterations

um_passes + 1;

+ 1;

e network performance.

:= compute_average (

- compute average (
= compute average (

:= compute average (

network performance

tr_err_array,
te_err_array,
tr _acc_array,
te_acc_array,

num_te_patterns );

num_te patterns );

tot_passes
tot™ _Dbasses
tot_passes
tot_passes

in matrixX format.

avg_tr_error,
avg _te_ _error,

tr_error_file,
te _error flle,

avg_tr_acc,
avg_te_acc

tr_accuracy file,
te _accuracy file,

interval );
interval );
interval });
interval )

-— Close all files.

close ( tr error file );
close ( te _error “file );
close ( tr_accuracy file
close ( te _accuracy file

— —
- we

G=7

N et et N

~e wme we we




-- End declare block.
end;
-- End main procedure.

end sompl;

G-8 .-




I
with system;
B with text_io; use text io;
with vector operations; use vector operations;
with math_11b_extension; use math_lib_extension;
package somp support is
- type layer ( inputs : positive; outputs : positive ) is
record
-- Network Parameters
- Fin : vector ( 1 .. inputs );
Fin_Prime : vector ( 1 .. inputs );
w : matrix ( 1 .. inputs, 1 .. outputs );
Del W : matrix ( 1 .. inputs, 1 .. outputs );
Theta : vector ( 1 .. outputs );
Del Theta : vector ( 1 .. outputs );
[ Fout : vector ( 1 .. outputs );
Fout_Prime : vector ( 1 .. outputs );
Eout : matrix (1 inputs, 1 outputs );
Eout_Prime : matrix ( 1 .. inputs, 1 outputs );
Etotal : vector ( 1 .. outputs );
Etotal Prime : vector ( 1 .. outputs );
l -- Temporary variables
X : vector ( 1 .. outputs );
v ¢ vector ( 1 .. outputs );
U : vector ( 1 .. outputs );
Q : vector ( 1 .. outputs );
- R : vector ( 1 outputs );
end record;
function sigmoid ( input : vector ) return vector;
function compute sum ( input : matrix ) return vector;
function sum_output_error ( input : vector ) return float;
function correct ( indexl, index2 : integey;
. output, desired : vector ) return integer;
function compute_ratio ( numerator : float ;
denominator : incteger ) return float;
function compute_average ( perf array : matrix;
j tot passes : integer ) return vector;

A




I
procedure initialize_ network ( L1, L2, L3 : in out layer;
center ¢ in float;
N | width : in float;
o seed : in out system.unsigned longword );
|
procedure forward pass ( L : in out layer;
A3, A5 : in float );
procedure compute_forward pass ( L1, L2, L3 : in out layer;
- A3, AS : in float );
procedure backward pass ( L : in out layer;
A3, A5 : in float );
— procedure update_weights ( L : in out layer;
cost ¢ in out float;
Al, A2, A4 : in float );
procedure update_thresholds ( L : in out layer;
cost : in out float;
l Al, A2, A4 : in float );

procedure find max_vals ( output : in vector;
indexl : in out integer;
index2 : in out integer );

end somp_support;

G=-10

. al

'Y




r—'—-vv—v

package body somp_ support is

output : vector ( input’range );
begin

for i in input’range loop
begin

- exception
when FLOOVEMAT => output(i) := 0.0;
end;
end loop;
return output;

end sigmoid;

begin
for i in input’range(l) loop
for j in input’range(2) loop
total(i) := total(i) + input(i, j);
- end loop;
end loop;
return total;

end compute_sum;

function sum_output_error ( input : vector )
total : float := 0.0;
- begin
for i in input’range loop

total := ( total + abs( input(i) ) ) / 2.0;
end loop;

’ return total;

end sum_output_error;

G-11

with float_math_lib; use float _math_lib;

function sigmoid ( input : vector ) return vector is

output(i) := 1.0 / ( 1.0 + exp ( -input(i) ) );

function compute_sum ( input : matrix ) return vector is

l' total : vector ( input’range(l) ) := ( others => 0.0 );

return float

is




function correct ( indexl, index2 : integer;
output, desired : vector ) return integer is

update : integer;
begin

if output(indexl) >= 0.5 and output(index2) < 0.5
and desired(indexl) = 1.0 then

update := 1;
else
update := 0;
end if;
return update;
end correct;
function compute_ratio ( numerator : float;
denominator : integer ) return float is
quotient : float;
begin
quotient := numerator / float(denominator);
return quotient;
end compute_ratio;
function compute_average ( perf array : matrix;

tot_passes : integer ) return vector is

temp : float;
perf vector : vector ( perf array’'range(?) };

begin

for j in perf _array’range(2) loop
temp := 0.0;
for i in perf array’range(l) loop
temp := temp + perf array(i, j);
end loop;
perf_vector(j) := temp / float(tot passes);
end loop;




return perf vector;

end compute_average;

procedure initialize networ. ( L1, L2, L3 :

center : in float;
width : in float;
seed :

begin

for j in L1.W’range(2) loop
for i in L1.W’'range(l) loop
uniform ( center, width,
Li.Del W(i, j) := 0.0;
end loop;
uniform ( center, width,
Ll1.Del Theta(j) := 0.0;
end loop;

for i in L1.Fin’'range loop
L1.Fin_Prime(i) := 0.0;
end loop;

for j in L2.W’'range(2) loop
for i in L2.W'range(l) loop
uniform ( center, width,
L2.Del W(i, j) := 0.0;
end loop;
uniform ( center, width,
L2.Del _Theta(j) := 0.0;
end loop;

for j in L3.W'range(2) loop
for i in L3.W'range(l) loop

uniform ( center, width, seed, L3.W(i, 3j) );
L3.Del W(i, j) := 0.0;

end loop;

uniform ( center, width, seed, L3.Theta(j) );

L3.Del Theta(j) := 0.0;

end loop;
end initialize network;
procedure forward pass ( L

A3, AS
Temp : float;

begin

in out system.unsigned_longword ) is

seed,

seed, Ll.Theta(j) );

seed,

seed, L2.Theta(j) );

in out layer;

L1.W(i, 3) ):

L2.W(i, j) );

in out layer;
in float ) is 4

o d



L.X := L.Pin * L.W;
L.Fout := sigmoid ( L.X + L.Theta );
L.V := ( others => 0.0 );

for j in L.W'range(2) loop
for i in L.W’'range(l) loop
L.V(j) := L.V(j) + ( L.Fin(i) * ( A3 * L.W(i, j)
+ A5 * L.Del W(i, j) ) )
+ ( L.Fin Prime(i) * L.W(i, j) );

end loop;
Temp := ( A3 * L.Theta(j) )
+ ( A5 * L.Del Theta(j) );
L.V(3) := L.V(j) + Temp;
L.U(3) := L.Fout(j) * ( 1.0 - L.Fout(j) );
L.Fout Prime(j) := L.V(j) * L.U(]j);
end loop;

end forward pass;

procedure compute forward pass ( L1, L2, L3 : in out layer;
A3, AS : in float ) is

begin

forward_pass ( L1, A3, AS );

L2.Fin := L1.Fout;
L2.Fin_Prime := Ll.Fout_Prime;

forward_pass ( L2, A3, A5 );

L3.Fin := L2.Fout;
L3.Fin_Prime := L2.Fout_Prime;

forward _pass ( L3, A3, A5 );

end compute_forward_pass;

procedure backward pass ( L : in out layer;
A3, A5 : in float ) is

begin

for j in L.W’range(2) loop
L.Q(j) := L.U(j) * L.Etotal(j);

L.R(j) := L.,U(j) * ( L.Etotal Prime(j) + ( L.Etotal(j)
* (1.0 - 2.0 * L.Fout(j) ) * L.V(J) ) );
]
G-14 .!%
A




-

for i in L.W’'range(l) loop

L.EBout(i, j)

L.Eout_Prime(i, j) :=

end loop;
end loop;

end backward_pass;

procedure update weights ( L

begin

t= L.Q(j) * L.W(i, j);
( L.R(F) * L.W(i, j) )
+ ( L.Q(3) *» ( A3 * L.W(i, j)
+ A5 * L.Del W(i, j) ) );
: in out layer;
cost : in out float;

Al, A2, A4 : in float ) i

for j in L.W'range(2) loop
for i in L.W’'range(l) loop
L.Del W(i, j) := ( ( 1.0 - A4 ) * L.Del W (i, j)

+ ( ( (A1l *» L.Q(3J) ) + L.R(j) ) * L.Fin(i) )
+ ( L.Q(j) * L.Fin_prime (i) );
L.W(i,Jj) t= L.W(i,j) + L.Del W(i, j);
cost := cost + ( L.Del W(i, j) ** 2 );
end loop;
end loop;
end update weights;
procedure update_thresholds ( L : in out layer;
cost ¢ in cut float;
Al, A2, A4 : in float ) is

begin

for i in L.Theta
L.Del Theta(i)

L.Theta(i)

( A2 * L.W(i, 3) )

*range loop

1.0 - a4 ) * L.Del Theta(i)
( A2 * L.Theta(i) Y
( ( A1l * L.Q(i) ) + L.R(1i)

= (|
+

:= L.Theta(i) + L.Del Theta(i);

cost := cost + ( L.Theta(i) ** 2 );

end loop;

G=15

S

)

)
);




.

end update_thresholds;

procedure find_max_vals ( output : in vector;
indexl : in out integer;
index2 : in out integer ) is

maxl : float := 0.0;
max2 : float := 0.0;
templ : integer;
temp2 : integer;
begin

for i in output’range loop
if output(i) >= maxl then
templ := i;
maxl := output(i);
end if;
end loop;

for i in output’range loop
if output(i) >= max2 and output(i) < maxl then
temp2 := i;
max2 := output(i);
end if;
end loop;

indexl := templ;
index2 := temp2;

end find max_vals;

end somp_support;

16 <




_ with system; .

with text io; use text io;
with float_text io; use float text_io;
with integer_text io; use integer_text io;
with vector operations; use vector operations;
i with math_lib_extension; use math 1ib_extension;
8 package somp io is
procedure get moment_array ( image_list : in string;
] num_moments : in integer;
4 moment_array : in out matrix );

procedure get feature_arrays ( num_features : in integer;
filename : in out string;
feature_array : in out matrix );

procedure generate random_moms ( num_patterns : in integer;
num_moments : in integer;
moment_array : in matrix;
input : in out vector;
Dout : in out vector;
seed : in out system.unsigned_longword );

procedure generate_seq moms ( count : in integer;
num_moments : in integer;
moment_array : in matrix;
input : in out vector;

procedure store net perf ( perf vector : in vector;
perf file : in out text io.file type;

Dout : in out vector );
interval : in integer 7J;
end somp io;

g G=17

N

5..1_‘

™



package body somp_io is

procedure get moment_array ( image_list : in string;
num_moments : in integer;
moment_array : in out matrix ) is

initial : integer := 1;

final : integer := 0; -
temp class : integer; -
num_vector : integer;

image name
image file
Temp_name

s»rxng (1 .. 14 );
text_io.file_type;
text_io.file_type;

begin
open ( image file, in_file, image_list );

while not end of file ( image_file ) loop
get ( image_file, image_ name );
open ( temp name, in file, image _name );
get ( temp name, temp_class );
get ( temp_name, num_vector };

final := final + num_vector; -
for i in initial .. final loop
skip_line ( termp_name, 3 );
for 3 in 2 .. ( num moments + 1 ) loop
moment _array(i, 1) := float(temp_class);
get ( temp name, moment_array(i, j) );
end loop;
end loop;
close ( temp name );
initial := initial + num_vector;
end loop;
close ( image file );

end get moment_array;

procedure get feature arrays ( num_features : in integer;
filename : in out string;
feature_array : in out matrix ) is
counter : integer := 1;

temp class : integer;

target : string (1 .. 4 );




b input_file : text_io.file_type;
begin

open ( input file, in_file, filename );
while not end_of file (input_file) loop

get ( input file, temp class );
get ( input file, target );
skip line ( input_file );
feature_array(counter, 1) := float( temp_class );
for j in 2 ..( num_features + 1 ) loop

get ( input_file, feature_array(counter, j) );
end loop;

skip_line ( input_file, 2 );
counter := counter + 1;

end loop;

close ( input_file );

end get_feature_arrays;

procedure generate random moms ( num patterns : in integer;

num_moments : in integer;
moment_array in matrix;

input in out vector;
Dout in out vector;
seed : in out system.unsigned_longword ) is
pick : float;
temp class : integer;
choice : integer;
begin
Dout := ( others => 0.0 ); .

uniform ( 0.5, 0.5, seed, pick );
choice := integer ( pick * float(num_patterns) + 0.5 );
if choice < 1 then
choice := i;
elsif choice > num_patterns then
choice := num patterns;
end if;

G-19 o




temp class := integer ( moment_array(choice, 1) );

for j in 2 .. ( num_moments + 1 ) loop
input(j - 1) := moment_array(choice, j);
end loop;

Al

Dout(temp_class) := 1.0;

end generate_random_moms;

procedure generate_seq moms ( count : in integer;
num_momerts : in integer;
moment_array : in matrix;
input : in out vector;
Dout : in out vector ) is

temp_class : integer;

begin

Dout ¢t= ( others => 0.0 );

temp class := integer(moment_array(count, 1));
for j in 2 .. ( num_moments + 1 ) loop
input(j - 1) := moment_array(count, j);

end loop;

Dout(temp class) := 1.0;

end generate_seq_moms;

procedure store_net_perf ( perf vector : in vector;
perf file : in out text io.file type;
interval : in integer ) is

temp interval : integer := 0;

begin

put ( perf file, "x = [" );
new _line ( perf file );

for i in perf vector’range loop
put ( perf Tile, temp interval );

new_line ( perf file 7;
temp_interval := temp interval + interval;
end loop;

put ( perf file, "]" );
new_line ( perf file );
put ( perf file, "y = [" );
new_line ( perf file ); 4

for i in perf vector’range loop
put ( perf file, perf vector(i) );

G=-20 4




new_line ( perf_file );
end loop;

put ( perf file, "]1" );

end store_net_perf;

end somp_io;

G-21




o e 2l 205 205 a0 208 o ot 5 0 20 200 0 o 20 20 200 2 ol 2t s afi afe 3l 2fx s ol afe 26 ol 306 ol ol aje ol oy o afe o ol 30k e ol ofe 20t ade m ol ofn e g ok ol ok o8 ol R 0
- Math_Lib_Extension

e 0000 00 00 200 200 3 40 308 008 30 0% 0K 24 30 3 20 o 3t 240 2 2 2 s e o 30 2 e o o0 a0 o o e o0 3o o o o o 30 e e o e ol age 3 e o o ok ol o o

== Purpose: Provides access to pseudorandom number
-- generators for both uniform and Gaussian distributions.

-- Inputs: 1) See individual routines.
-- Outputs: 1) See individual routines.

-- Author: Dennis W. Ruck (GE-87D), AFIT/ENG

== o 2 ol 2 2 o 2 afe R 2 29 ofc e 2 3 aje 20 o ol ol e 303l 3 3 o ofe ade e e aje a3t afe ot afe e a3 s ke o0 ofe e s o ol ofe ofe e e e 3l o ok ok ok

with system; use system;
package math_lib_extension is

type time_array is new unsigned_word_array (1..7);

procedure mth_random ( val : out float; seed : in out unsigned_longword );
pragma INTERFACE ( vaxrtl, mth_random );
pragma IMPORT_VALUED_PROCEDURE ( mth_random, "MTH$RANDOM",

mechanism => (value, reference));

procedure uniform ( center : in float;
width : in float;
seed : in out unsigned_longword;
val : out float ); - i
procedure gaussian ( mean ¢ in float;
variance : in float;
seed : in out unsigned_longword;
val : out float ); |

function get_seed return unsigned_longword;

end math_lib_extension;

A




caBBPREEEESREA N R RS RERERRREEREEEERERASEREEREERRRREREEE e h
-~ Math_Lib_Extension (package body)
L T T P e e

~- Purpose: Package to provide pseudeorandom number generators
~- with uniform and Gaussian distributionms.

-- 1Inputs: 1) See the individual routines.
~- Qutputs: 1) See the individual routines.

«= Author: Dennis W. Ruck (GE-87D), AFIT/ENG

e == afu ol 200 o0 306 ot e 300 30 3 o0t 3t ofe 3 afe e e o4t e e o0t M 20 2 e o0 ol e ol e ofe o e 3¢ ke e ol e o0 ol a0 30 e ade e e a0 afe o ade e ol age e ot afe o e
with starlet;

with condition_handling;

with float_math_lib; use float_math_lib;

package body math_lib_extension is

~- This procedure will return a uniform random sample centered
~- about CENTER plus or minus WIDTH.

procedure uniform ( center : in float;
width : in float;
seed : in out unsigned_longword;
val : out float ) is

x : float;

begin

-- get uniform random variable between 0 and 1
mth_random ( x, seed );

-- adjust to center +/- width
x := x * width *= 2.0;
X := x + center - width;

val := x;

end uniform;




-- This procedure will return a gaussian random variable sample
-~ with mean MEAN and variance of VARIANCE. The central limit theorem
-- is invoked to approximate the gaussian with a sum of uniform RVs.

procedure gaussian ( mean : in float;
variance : in float;
seed : in out unsigned_longword;
val : out float ) is

num_rvs : constant := 20;

sum : float := 0.0;

p 4 : float;

Z : float;

Y : float;

ave : float;

norm : float;

begin

-~ Obtain a sum of random variables that are uniform between
-- 0 and 1.
for i in 1..num_rvs loop
mth_random ( x, seed );
sum := sum + X;
end loop;

ave := sum / float(num_rvs);
-- AVE is a rv with mean = 0.5 and variance = 1/(12*num_rvs);
-- now normalize AVE

Z := (ave-0.5)/8qrt(1.0/(12.0«float(num_xvs)));

-- Now unnormalize to desired mean and variance
Y :* mean + sqrt(variance)*Z;

val := Y;

end gaussian;
function get_seed return unsigned_longword is
~- Returns the lower unsigned longword of the binary representation

-- of the system time as the initial seed for the pseudo-
-~ random number generator.

Nl

N W

G-24




-

status : condition_handling.cond_value_type;
bintim : unsigned_quadword;
begin

STARLET.gettim ( status, bintim );
return bintim.LO;
end get_seed;

end math_lib_extension;

| -




!l e LTI P P e P T P P L D b P e L R T A e R
:: Vector_Operations (package spec)

p ::ttttttttt#ttt‘t“#ttt#t*tt##.tt't‘###t###‘t#t#t#t#tttttt‘tt

*- :: Purpose: Provide general vector operations to allow

{ == a more readable implementation of equations consisting
-- of one and two dimensional arrays.

-- Inputs: 1) See individual routines.
-- Outputs: 1) See individual routines.

== Author: Dennis W. Ruck (GE-87D), AFIT/ENG
-- Modified By: Charles C. Piazza (GE-88D), AFIT/ENG

e o o 0 0 o0 o ot a0 ol a0 200 50% 90 o e ol e ol ol 0 a0 o a2 a0 a0 ale o0t o0 ol o o o0 o afn ol ol ol ol o ol o o e e ol o ot e ol o o

with text_io;
package vector_operations is

type vector is array ( integer range <> ) of FLOAT;
type matrix is array ( integer range <>, integer range <> ) of FLOAT;

function "= ( left : vector;
right : matrix ) return vector;

function "*" ( left, right : vector ) return float;

function "*" ( left : float;
right : matrix ) return matrix;

function "*" ( left : float;
right : vector ) return vector;

function "+" ( left, right : matrix ) return matrix;
function "+" ( left, right : vector ) return vector;
function "-" ( left, right : matrix ) return matrix; i

function "-" ( left, right : vector ) return vector;

C-26 4




procedure put ( output

data
~ procedure put ( data
procedure get ( input
data
= end vector_operations;
.

!l function distance ( left, right : vector ) return float;

: in text_io.file_type;
: in vector );

: in matrix );

: in text_io.file_type;
: out vector );

G-27

R

.




=B ERERRR RS RERRRREREE SRR SR SRS EEREEERERSEEERERERERBERRBERERERSR

-

-- Vector_Operations (package body)

RS SRRRRRRERRRRERRBNRRRERRRERERESNERERSR SRR RERe R R RRRRRER

-~ Purpose: Provide generic vector operations to allow a more
-~ readable implementation of equations consisting of one and
== two dimensional arrays.

-- Inputs: 1) See individual routines.

-- Outputs: 1) See individual routines.

-~ Author: Dennis W. Ruck (GE-87D), AFIT/ENG
-- Modified By: Charles C. Piazza (GE-88D), AFIT/ENG

e o R o0 200 2 o o o o0 o o o o e 308 200 a0 20 200 o e a0 o o e ot 200 06 o6 a0 s a0k o o Y 00 e e o 3 e e 3 e o 3 o e o e s o o o oK

with text_io; use text_io;
with float_text_io; use float_text_io;
with float_math_lib; use float_math_lib;

package body vector_operations is

function "»" ( left : vector;
right : matrix ) return vector is

sum : FLOAT;
product : vector ( right’range(2) );

begin

for j in right’range(2) loop
sum := 0.0;
for i in right’range(1) loop
sum := sum + left (i) * right (i,j);
end loop;
product (j) := sum;
end loop;

return product;

end ll‘" ;

G-28




function "»" ( left, right : vector ) return FLOAT is
sum : FLOAT := 0.0;
begin
for i in left’range loop
sum := sum + left (i) » right (i);
end loop;
return sum;
‘nd "‘";
function "*" ( left : float;
right : matrix ) return matrix is
product : matrix ( right’range(1), right’range(2) );
begin
for i in right’range(1) loop
for j in right’range(2) loop
product (i, j) := left » right (i, j);
end loop;
end loop;
return product;
end n*n;
function "#" ( left : float;
right : vector ) return vector is
product : vector ( right’range );
begin
for i in right’range loop

product (i) := left * right (i);
end loop;

la.




return product;

.nd l" " ;

function "+" ( left, right : matrix ) return matrix is
sum : matrix ( left’range(1), left’range(2) );
begin
for i in left’range(2) loop

for j in left’range (1) loop

sum (i, j) := left (i, j) + right (i, j);

end loop;

end loop;

return sum;

end My ;

function "+" ( left, right : vector ) return vector is
sum : vector ( left’range );
begin
for i in left’range loop
sum (i) := left (i) + right (i);
end loop;

return sum;

end "+" ;

function "-" ( left, right : matrix ) return matrix is
diff : matrix ( left’range(1), left’range(2) );
begin

for i in left’range(2) loop
for j in left’range(1l) loop

G-30




dift (i, j) := left (i, j) - right (i, j);
- end loop;
end loop;

return diff;

‘nd "now ;

function "-" ( left, right : vector ) return vector is
- diff : vector ( left’range );

begin

for i in left’range loop
diff (i) := left (i) - right (i);
end loop;

-

return diff;

end "-";

function distance ( left, right : vector ) return float is
sum_x2 : float := 0.0;
begin

for j in left’range loop

sum_x2 := sum_x2 + ( left (j) - right (j) ) *» ( left (j) - right (j) );
end loop;

return sqrt ( sum_x2 );

ond distance;

procedure put ( output : in text_io.file_type;

data : in vector ) is
col_max : constant := 72; .i
width : constant := 10; 1

col : positive := 1;




begin
for j in data’range loop
put ( output, data (j), 0, 6, 1 );
put ( output, " " );
col := col + width;
if col > col_max then
nev_line ( output );

col := 1;
end if;

end loop;
end put;
procedure put ( data : in matrix ) is
col_max : constant := 72;
width : constant := 10;
col : positive := 1;

begin
for i in data’range(1) loop
for j in data’range(2) loop
put ( data (i,j), 1, 4, 0);
put ( " on );
col := col + width;
if col > col_max then
new_line;
col := 1;
end if;
end loop;
new_line;
col := 1;
end loop;
end put;

procedure get ( input : in text_io.file_type;

data : out vector ) is
begin
for j in data’range loop
get ( input, data (j) );
end loop;
ond get;

G-32




-

end vector_operations;

G-33




.

—————

(1]

(2]

(3]

(4]

[3)

[6)

(7]

(8]

(9]

(10)

(11}

Bibliography

Bendat, Julius Bendat and Piersol, Allan G. "Random Data:
Analysis and Measurement Procedures", Wiley-Interscience,
99-~105.

Hu, Ming-Kuei, "Visual Pattern Recognition by Moment
Invariant®", IRE Trans. Inform. Theory, vol.IT-8 179-187
(February 1962).

Kreyszig, Erwin, "Advanced Engineering Mathematics". Fifth
Edition, John Wiley & Sons, 764,

Lippmann, Richard P. "An Introduction to Computing with
Artificial Neural Networks", IEEE Transactions on Computers,
4.4-22 (April 1987).

Melsa, James L. and Cohn, David L. "Decision and Estimation
Theory", McGraw-Hill Book Company, 1-53.

Oxley, MarK, Asst. Professor. Notes takKen during 1nterviews
and discussions. Department of Mathematics and Computer
Science, Alr Force Institute of Technology (AU), Wright-
Patterson AFB, OH, 1988.

Parker, David B. "Optimal Algorithms for Adaptive Networks:
Second Order BacK Propagation, Second Order Direct
Propagation, and Second Order Hebbian Learning", Proceedings
of the IEEE First Annual Conference on Neural NetworkKs, vol.
II, 593-600 (June 1987).

Parker, David B. "Second Order BacK Propagation:
Implementing an Optimal O(n) Approximation to Newton’s
Method as an Artificial Neural Network", for submission to
Computer, (September 1987).

Rogers, Steven K. Asst. Professor. Notes taKen from weekKly
meetings. Department of Electrical Englneering, Alr Force
Institute of Technology (AU, Wright-Patterson AFR, OH,
1988.

Roggemann, MiKe. Phd Student. Notes taKken from i1nterviews
and discussions. Provided data for testing and analysis.
Department of Electrical Engineering, Alr Force Institute
of Technology (AU), Wright-Patterson AFB, OH, 1988.

Rosenfeld, Azriel. "Digital Picture Processing", vol. ITI,
second edition, 62-73

BI-t




(12)

[(13)

[14)

(15]

(16]

Dennis W. "Multisensor Target Detection and

Classification", MS Thesis, AFIT/GE/87D-56. School of
Engineering,
Patterson AFB, OH, (December 1987).

Rumme lhart,
Ronald J. "Parallel Distributed Processing: Explorations in
Microstructure of Cognition, Vol. {:Foundations.

Cambridge MA: MIT Press, 1986,

Gilbert. "Linear Algebra and Its Applications",
second edition, Academic Press, 243-254;, 297-304.

University

williams,

Air Force Institute of Technology (AU), Wright-

David E., Hinton, Geoffrey E., and Williams, ) ﬁ

Paul J. "Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral Sciences", Harvard
(August 1974).

Ronald J. "On the Use of BacKpropagation 1in
Assoclative Reinforcement Learning", Proceedings of the IEEE
Second Annual Conference on Neural Networks, vol. I, 263-
(June 1988). (June 1987).

BI-2




g

VITA

Captain Charles C. Piazza was born on~

in 1976, He enlisted into the
United States Ai: Force in 1977 and was accepted into the Airman
Education and Commissioning Program in March 1981. Captair
Piazza attended the University of South Carolina and received the
degree of Rachelor of Science 1in Computer and Electrica:
Engineerihg in May 1984, Upon completion of Officer Training
School, he received his commission in September 1984, Captain
Piazza - was assigned to the 18i15th Operational, Test and
Evaluation Squadron, in January 1985. While there, he performed
the duties of Team Chief, of a'highly technical high frequency
evaluation team. He was also selected as the Course Director of
the Narrowband High Frequency Systems Evaluation Course, for
AFCC’s Systems Evaluation School in March 1986. In May of 1987,

he entered into the School of Engineering, Air Force Institute of

Technology.

™,



V1N

- SECURITY CLASSIFICATION OF THIS PAGE.
3
! Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0158
D ———— N
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSTFIED _
ta. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
. / . . . P
|2b DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unl red.
e T ——
. 1. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
' AFIT/GE/ENG/88D~36
1. NAME OF PERFORMING ORGANIZATION 6b. c(a;nc:l Isvma;:L 7a. NAME OF MONITORING ORGANIZATION
: : if applicable
School of Engineering AFTT/ENG
5c ADORESS (City, State, and ZIP Code) 7b. ADORESS (City, State, and 2IP Code) V- & -
. Air Force Institute of Technology ) mgbo\
l Wright-Patterson AFB OH 45433-6583 M ,\
. I -zg‘? oS
{ ja. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER
ORGANIZATION RADC (If applicable)
I Fred Diamond CoTC
% | lc ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
iffis AFB : PROGRAM PROJECT TASK WORK UNIT
I Griffis NY 13411 ELEMENT NO. | NO. NO ACCESSION NO.

! 11. TITLE (Include Security Classification)
I Modified Backward Error Propagation for Tactical Target Recognition

) 12. PERSONAL AUTHOR(S)

Charles C. Piazza, B.S., Capt, USAF
I 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Thesis FROM TO 1988 December 198

16. SUPPLEMENTARY NOTATION

l 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
| FEW GROUP SUB-GROUP Artificial Neural Network, Backward Error Propagation,
12 Q9 Pattern Classification, Target Recognition,
leaming Machipes

I 19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis explores a new approach to the classification of tactical targets using
l a new biologically-based neural network. The targets of interest were generated from
doppler imagery and forward looking infrared imagery, . and consisting of tanks, trucks,
I armored personnel carriers, jeeps and petroleum, o0il, and lubricant tankers. Each target
‘ was described by feature vectors, such as normalized moment invariants. The features were
i, generated from the imagery using a segmenting process. These feature vectors were used as
l the input to a neural network classifier for tactical target recognition.
] The neural network consisted of a multilayer perceptron architecture, employing a
; backward error propagation learning algorithm. The minimization teclinique used was an
H approximation to Newton's method. This secord order algorithm is a generalized version of
well known first order techniques, i.e., gradient of steepest descent and momentum methods.
1 Classification using both first and second order techniques was performed, with comparisons

L drawn.
¥720. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O uncLassiFiEDUNUMITED i SAME AS RPT. [ oTic usERrS UNCLASSIFIED
: I 22a. NAME OF RESPOMSIBLE INDIVIDUAL 22b. TELEPHONGE (Include Area Code) | 22¢. OFFICE SYMBOL
Steven ers tain, USAF (513) 255-3576 AFIT/ENG

i J0 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
1




